期刊文献+

Research on multi-fidelity aerodynamic optimization methods 被引量:11

Research on multi-fidelity aerodynamic optimization methods
原文传递
导出
摘要 Constructing high approximation accuracy surrogate model with lower computational cost has great engineering significance. In this paper, using co-Kriging method, an efficient multi-fidelity surrogate model is constructed based on two independent high and low fidelity samples. Co-Kriging method can use a greater quantity of low-fidelity information to enhance the accuracy of a surrogate of the high-fidelity model by modeling the correlation between high and low fidelity model, thus computational cost of building surrogate model can be greatly reduced. A wing-body problem is taken as an example to compare characteristics of co-Kriging multi-fidelity (CKMF) model with traditional Kriging based multi-fidelity (KMF) model. A sampling convergence of the CKMF model and the KMF model is conducted, and an appropriate sampling design is selected through the sampling convergence analysis. The results indicate that CKMF model has higher approximation accuracy with the same high-fidelity samples, and converges at less high-fidelity samples. A wing-body drag reduction optimization design using genetic algorithm is implemented. Satisfying design results are obtained, which validate the feasibility of CKMF model in engineering design. Constructing high approximation accuracy surrogate model with lower computational cost has great engineering significance. In this paper, using co-Kriging method, an efficient multi-fidelity surrogate model is constructed based on two independent high and low fidelity samples. Co-Kriging method can use a greater quantity of low-fidelity information to enhance the accuracy of a surrogate of the high-fidelity model by modeling the correlation between high and low fidelity model, thus computational cost of building surrogate model can be greatly reduced. A wing-body problem is taken as an example to compare characteristics of co-Kriging multi-fidelity (CKMF) model with traditional Kriging based multi-fidelity (KMF) model. A sampling convergence of the CKMF model and the KMF model is conducted, and an appropriate sampling design is selected through the sampling convergence analysis. The results indicate that CKMF model has higher approximation accuracy with the same high-fidelity samples, and converges at less high-fidelity samples. A wing-body drag reduction optimization design using genetic algorithm is implemented. Satisfying design results are obtained, which validate the feasibility of CKMF model in engineering design.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第2期279-286,共8页 中国航空学报(英文版)
基金 supported by the Seventh Framework Programme of China-EU Collaborative Projects
关键词 AERODYNAMICS CO-KRIGING Multi-fidelity OPTIMIZATION Surrogate model Aerodynamics Co-Kriging Multi-fidelity Optimization Surrogate model
  • 相关文献

参考文献1

二级参考文献1

共引文献8

同被引文献226

引证文献11

二级引证文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部