期刊文献+

Effect of thickness on optoelectrical properties of Nbdoped indium tin oxide thin films deposited by RF magnetron sputtering

Effect of thickness on optoelectrical properties of Nbdoped indium tin oxide thin films deposited by RF magnetron sputtering
原文传递
导出
摘要 Niobium-doped indium tin oxide (ITO:Nb) thin films are prepared on glass substrates with various film thicknesses by radio frequency (RF) magnetron sputtering from one piece of ceramic target material. The effects of thickness (60-360 nm) on the structural, electrical and optical properties of ITO: Nb films are investigated by means of X-ray diffraction (XRD), ultraviolet (UV)-visible spectroscopy, and electrical measurements. XRD patterns show the highly oriented (400) direction. The lowest resistivity of the films without any heat treatment is 3.1×10^(-4) Ω·cm^(-1), and the resistivity decreases with the increase of substrate temperature. The highest Hall mobility and carrier concentration are 17.6 N·S and 1.36×10^(21) cm^(-3), respectively. Band gap energy of the films depends on substrate temperature, which varies from 3.48 eV to 3.62 eV. Niobium-doped indium tin oxide (ITO:Nb) thin films are prepared on glass substrates with various film thicknesses by radio frequency (RF) magnetron sputtering from one piece of ceramic target material. The effects of thickness (60-360 nm) on the structural, electrical and optical properties of ITO: Nb films are investigated by means of X-ray diffraction (XRD), ultraviolet (UV)-visible spectroscopy, and electrical measurements. XRD patterns .show the highly oriented (400) direction. The lowest resistivity of the films without any heat treatment is 3.1 x 10^4 f2.cm-l, and the resistivity decreases with the increase of substrate temperature. The highest Hall mobility and carrier concentration are 17.6 N.S and 1.36x 10^21 cm3, respectively. Band gap energy of the films depends on substrate temperature, which varies from 3.48 eV to 3.62 eV.
出处 《Optoelectronics Letters》 EI 2013年第3期198-200,共3页 光电子快报(英文版)
  • 相关文献

参考文献23

  • 1D. S. Ginleyetal, Handbook of Transparent Conductors, 1 (2010).
  • 2A. E. Delahoy, L. Chen, M. Akhtar, B. Sang and S. Guo, Solar Energy 77, 785 (2004).
  • 3R. B. H. Tahar, T. Ban, Y. Ohya and Y. Takahashi, J. Appl. Phys. 83, 2631 (1998).
  • 4E. Aperathitis, M. Bender, V. Cimalla, G. Ecke and M. Modreanu, J. Appl. Phys. 94, 1258 (2003).
  • 5Y. F. Lan, W. C. Peng, Y. H. Lo and J. L. He, Materials Research Bulletin 44, 1760 (2009).
  • 6L. J. Meng, J. Gao, M. P. dos Santosd, X. Wang and T. T. Wang, Thin Solid Films 516, 1365 (2008).
  • 7J. P. Zheng and H. S. Kwok, Applied Physics Letters 63, 1 (1993).
  • 8F. L. Akkad, A. Punnose and J. Prabu, J. Appl. Phys. A 71, 157 (2000).
  • 9T. Sasabayashia, N. Itoa, E. Nishimuraa, M. Kona, P. K. Songa, K. Utsumib, A. Kaijoc and Y. Shigesato, Thin Solid Films 445, 219 (2003).
  • 10A. Luis, C. Nunes de Carvalho, G. Lavareda, A. Amaral, P. Brogueira and M. H. Godinh, Vacuum 64, 475 (2002).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部