期刊文献+

统计策略序列模式挖掘及其在软件缺陷预测中的应用 被引量:1

Statistically Significant Sequential Pattern Mining Applying to Software Defect Prediction
下载PDF
导出
摘要 人类的生活越来越依赖于高可靠性和可用性的软件系统,软件缺陷一直是软件工程领域中研究最活跃的内容之一。在研究序列模式挖掘技术的基础上,介绍了软件缺陷预测的相关技术,设计了一种基于统计策略的序列模式挖掘算法的软件缺陷预测方案,实现了InfoMiner和STAMP两种模式挖掘算法、卡方检验特征选择和SVM等分类算法;构造了一个软件缺陷预测模型,实现了预测和发现软件系统中的未知缺陷的功能。实验结果表明,所提软件预测模型可以获得良好的预测结果,具有一定的使用价值和应用前景。 Nowadays the human beings are more and more reliant on software systems which have high reliability and usability, and the technology of software defect prediction has been one of the most active parts of software engineering. This paper introduced the technology of software defect prediction on the basis of sequential pattern mining and de- signed a model for software defect prediction with the technology of mining statistically significant pattern. It described the architecture and detailed implementation of the algorithms named "InfoMiner" and "STAMP". The model using In- foMiner and STAMP to mine patterns, chi-square test to feature selection and SVM to classify can find unknown defects with high probability. Experimental results show that the model is able to get high prediction accuracy, so that it is valua- ble and has future prospects.
出处 《计算机科学》 CSCD 北大核心 2013年第5期164-167,188,共5页 Computer Science
关键词 数据挖掘 序列模式 软件缺陷 信息增益 分类预测 Data mining Sequential pattern Software defect Information gain Classification and prediction
  • 相关文献

参考文献9

  • 1Agrawal R, Srikant R. Mining sequential patterns [C]//Procee- dings of the Eleventh Intemational Conference on Data Engi- neering. Washington DC, USA: IEEE Computer Society, 1995: 3-14.
  • 2Chen Yuan, Shen Xiang-heng, Du Peng, et al. Research on Soft- ware Defect Prediction Based on Data Mining[C]//The 2nd In- ternational Conference on Computei" and Automation Enginee- ring. Singapore: ICCAE, 2010 : 563-567.
  • 3Yang Jiong, Wang Wei, Yu P S. Infominer: mining surprising periodie patterns [C] //Proceedings of the Seventh ACM SIGK- DD International Conference on Knowledge Discovery and Data Mining(KDD' 01). New York, USA: ACM, 2001 : 395-400.
  • 4Yang Jiong, Wang Wei, Yu P S. STAMP :on discovery of statis- tically important pattern repeats in long sequential data[C]// Proceedings of the Third SIAM International Conference on Da- ta Mining (SDM' 03 ). San Francisco, CA, USA: SIAM, 2003: 224-238.
  • 5杨明,张载鸿.决策树学习算法ID3的研究[J].微机发展,2002,12(5):6-9. 被引量:51
  • 6Quinlan J R. CA. 5:Programs for Machine Learning[M]. San Francisco: Morgan Kaufmann Publishers, 1993.
  • 7眭俊明,姜远,周志华.基于频繁项集挖掘的贝叶斯分类算法[J].计算机研究与发展,2007,44(8):1293-1300. 被引量:12
  • 8Han Jia-wei, Karnber M. Data Mining: Concepts and Techniques [M]. San Francisco: Morgan Kaufmann Publishers, 2006.
  • 9Lo D, Cheng Hong, Han Jia-wei, et al. Classification of Software Behaviors for Failure Detection: A Discriminative Pattern Mi- ning Approach [C]//Proceedings of the 15th ACM SIGKDD (KDD' 09). New York, USA.. ACM, 2009 : 557-565.

二级参考文献25

  • 1李习彬.熵、信息、控制与系统的组织化程度[M].成都:四川科学技术出版社,1993..
  • 2郑扣根.人工智能[M].北京:机械工业出版社,2000..
  • 3徐立本.机器学习引论[M].长春:吉林大学出版社,1996..
  • 4P Domingos,M Pazzani.Beyond independence:Conditions for the optimality of the simple Bayesian classifier[C].The 13th Int'l Conf on Machine Learning,San Francisco,CA,1996.
  • 5G I Webb,J R Boughton,Z J Wang.Not so naive Bayes:Aggregating one-dependence estimators[J].Machine Learning,2005,58(1):5-24.
  • 6D Meretakis,B Wuthrich.Extending naive Bayes classification using long itemsets[C].The 5th ACM SIGKDD Int'l Conf on Knowledge Discovery and Data Mining,San Diego,CA,1999.
  • 7R Agrawal,M Srikant.Fast algorithms for mining association rules in large databases[R].IBM Almaden Research Center,Tech Rep:RJ9839,1994.
  • 8R Agrawal,M Srikant.Fast algorithms for mining association rules[C].The 20th Int'l Conf on Very Large Data Bases,Santiago,Chile,1994.
  • 9H Mannila,H Toivonen,A I Verkamo.Efficient algorithms for discovering association rules[C].The AAAI'94 Workshop on Knowledge Discovery in Database,Seattle,WA,1994.
  • 10P Langley,S Sage.Induction of selective Bayesian classifiers[C].The 10th Conf on Uncertainty in Artificial Intelligence,Seattle,WA,1994.

共引文献61

同被引文献8

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部