期刊文献+

基于多变异粒子群优化算法的模糊关联规则挖掘 被引量:12

Mining Fuzzy Association Rules Based on Multi-mutation Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 针对事务数据库中连续型数值较难划分及粒子群优化算法易陷入局部最优的问题,提出一种用多变异粒子群优化算法进行模糊关联规则提取的框架,即先对连续型数值进行模糊区间划分,再通过多变异粒子群优化算法对划分结果进行模糊关联规则挖掘。分别对模糊划分方法和多变异粒子群优化算法的相关参数及框架等进行说明。在多组实验中进行比较分析,结果表明了该方法的准确性和有效性。 To deal with the problem that continuous value in the transaction database are difficult to divide and particle swarm optimization algorithm is easy to be troubled with local optimal, this paper proposed a framework about multi- mutation particle swarm optimization algorithm for extracting fuzzy association rules. Firstly, the continuous values are divided into the fuzzy interval. Then using multi-mutation particle swarm optimization algorithm to mine the fuzzy asso- ciation rules from the division results. This paper described the fuzzy division method and multi-mutation particle swarm optimization algorithm's parameters, framework and others. And it proved the accuracy and efficiency of this method by comparative analysis in several experiments.
作者 王飞 缑锦
出处 《计算机科学》 CSCD 北大核心 2013年第5期217-223,共7页 Computer Science
基金 国家自然科学基金项目(61103170) 厦门市科技计划项目(3502Z20113022)资助
关键词 数据挖掘 粒子群优化 变异算子 多变异算子 关联规则 模糊规则 Data mining Particle swarm optimization Mutation operator Multi-mutation operator Association rules Fuzzy rules
  • 相关文献

参考文献28

  • 1Agrawal R, Imielinski T, Swami A. Mining association rules be- tween sets of items in large databases[C] //Buneman P, Jajodia S,eds. Proc of the 1996 ACM SIGMOD Int'l Conf. on Manage-ment of Data. New York: ACM Pressa, 1993 : 207-216.
  • 2Agrawal R, Srikant tL Fast algorithms for mining association roles[C]//Proc, of the Int' 1 Conf. on Very Large Data Bases (VLDB). Santiago, 1994: 487-499.
  • 3Agrawal R , Sharfer J . Parallel Mining of Association Rules[J]. IEEE Transactions on Knowledge and Data Engineering, 1996,8(6) :962-969.
  • 4Park J S, Chen M, Yu P S. Efficient Parallel Data Mining for Mining Association Rules[C]//ACM International Conference on Information and Knowledge Management. 1995:31-36.
  • 5李玲娟,张敏.云计算环境下关联规则挖掘算法的研究[J].计算机技术与发展,2011,21(2):43-46. 被引量:48
  • 6Wang Xiao-li, Mabu Shin-go, Zhou Hui-yu, et al. Time Related Association Rules Mining with Attributes Accumulation Mecha- nism Applied to Large-scale Traffic System[C]// SICE Annual Conference 2010. August 2010:2637-2641.
  • 7Lan Guo-cheng, Chen Chun-Hao, Hong Tzung-pei, et al. A Fuzzy Approach for Mining General Temporal Association Rules in a Publication Database[C] // 2011 11th International Conference on Hybrid Intelligent Systems (HIS). 2011 : 6 11-615.
  • 8Prasanna K, Seetha M. Mining High Dimensional Association Rules by Generating Large Frequent K-Dimension Set [C]// 2012 International Conference on Data Science & Engineering (ICDSE). 2012:58-63.
  • 9朱玉,张虹,孔令东.基于人工免疫的多维关联规则挖掘及其应用研究[J].计算机科学,2009,36(8):239-242. 被引量:5
  • 10Wang Shyue-liang, Hong Tzung-pei, Tsai Yu-chuan, et al. Multi- table Association Rules Hiding[C] // 2010 10th International Conference on Intelligent Systems Design and Applications. 2010:1298-1302.

二级参考文献156

共引文献364

同被引文献119

引证文献12

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部