期刊文献+

熔石英表面紫外损伤点的飞秒激光修复技术 被引量:6

Mitigation of Ultraviolet Laser Damage on Fused Silica Surface with Femtosecond Laser System
原文传递
导出
摘要 熔石英表面激光损伤发展问题一直制约着高功率激光系统的运行通量,采用飞秒激光修复损伤点抑制损伤发展并探索修复机理。首先采用时域有限差分方法(FDTD)分析不同形状修复点的电场分布,优化修复点结构。通过改变飞秒激光脉冲能量、样品台移动参数控制修复点的形状、尺寸与深度,实现最优化修复结构。结果表明矩形修复结构降低了局部区域光强分布,经飞秒激光修复后,修复点的损伤发展阈值远高于修复前损伤点的发展阈值。采用微区电子能谱仪(EDS)分析修复点的化学成分发现飞秒修复能减少氧缺陷含量,从而降低吸收系数。因此,减少吸收性缺陷以及降低局部光强是抑制损伤发展的关键因素。 Growth of laser induced damage on the surface of fused silica plays a major role in determining optics lifetime in high power laser systems. In this paper, a femtosecond laser system is applied to create benign mitigation pits to replace growing damage sites; the mitigation mechanism is also explored. The electric filed distribution around mitigation pit is modeled with the finite difference time domain (FDTD) method to determine the optimal mitigation geometry. The shape, size and depth of mitigation pit are controlled by varying energy of femtosecond laser, changing the movement mode of sample stage, in order to achieve the optimal mitigation geometry. The results of laser damage growth test indicate that the rectangular mitigation structure can reduce the light intensity distribution and the damage threshold of mitigation pits is much higher than damaged sites. Furthermore, Energy dispersive spectrometers (EDS) microanalysis technique is used to detect the chemical composition of mitigation pits, and results shows that ultraviolet absorbing defects are removed after mitigation. Reduces of the ultraviolet absorbing defects as well as the local light intensity are key factors to succeed in mitigating growing damage sites.
出处 《中国激光》 EI CAS CSCD 北大核心 2013年第4期66-73,共8页 Chinese Journal of Lasers
关键词 激光光学 修复 飞秒激光 熔石英 laser optics mitigation femtosecond laser fused silica
  • 相关文献

参考文献3

二级参考文献45

  • 1赵松楠,吕海兵,任寰,黄进,蒋晓东,魏晓峰,郑万国,满永在.CO_2激光器在光学元件表面处理中的应用[J].激光与光电子学进展,2006,43(3):43-47. 被引量:6
  • 2Gerard Raze, Jean-Marie Morchain, Marc Loiseau a al.. Parametric study of the growth of damage sites on the rear surface of fused silica windows[C]. SPIE, 2003, 4932:127-135.
  • 3L. W. Hrubesh, M. A. Norton, W. A Molander et al.. Methods for mitigating growth of laser-initiated surface damage on fused silica optics at 351 nm[C]. SPIE, 2002, 4679:23-33.
  • 4P. A. Temple, D. Milam, W. H. Lowdermilkaal.. CO2 laser polishing of fused silica surfaces for increased laser damage resistance at 1. 064 μm[C]. Proceeding of Laser Induced Damage in Optical Materials, 1980. 229-236.
  • 5Laurent Gallais, Philippe Cormont, Jean-Luc Rultier. Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation [J]. Opt. Express, 2009, 17(28) : 23488-23501.
  • 6W. Dai, X. Xiang, Y. Jiang et al.. Surface evolution and laser damage resistanee of CO2 laser irradiated area of fused silica[J]. Opt. Laser Engng. , 2011, 49(2): 273-280.
  • 7M. J. Matthews, I. L. Bass, G. M. Guss et al.. Downstream intensification effects associated with CO2 laser mitigation of fused siliea[C]. SPIE, 2007, 67211: 67200A.
  • 8I. L. Bass, V. G. Draggoo, G. M. Guss et al.. Mitigation of laser damage growth in fused silica NIF optics with a galvanometer scanned CO2 laser[C]. SPIE, 2006, 6261: 62612A.
  • 9M. J. Matthews, J. S. Stolken, R. M. Vignes et al.. Residual stress and damage-induced critical fracture on CO2 laser treated fused silica[C]. SPIE, 2009, 7504:750410.
  • 10E. Mendez, K. M. Nowak, H. J. Baker et al.. Localized CO2 laser damage repair of fused silica optics[J]. Appl. Opt. , 2006, 45(21) : 5358-5367.

共引文献19

同被引文献56

  • 1段利华,张问辉,胡建平,雷向阳,王万录.3ω激光辐照下熔石英的损伤增长研究[J].激光杂志,2005,26(2):24-25. 被引量:2
  • 2王雪,谢志江,孙红岩,陈平.大口径精密光学元件表面疵病检测系统研究[J].仪器仪表学报,2006,27(10):1262-1265. 被引量:20
  • 3Bass I L, Guss G M, Nostrand M J, et al. An improved method of mitigating laser - induced surface damage growth in fused silica using a rastered pulsed CO2 laser [ C ]. Laser Damage Symposium XLII: Annual Symposi- um on Optical Materials for High Power Lasers. Interna- tional Society for Optics and Photonics, 2010 : 784220 - 784220 - 12.
  • 4Wong J, Ferriera J L, Lindsey E F, et, al. Morphology and microstructure in fused silica induced by high fluence ul- traviolet 3ω ( 355nm ) laser pulses [ J ]. Journal of non- crystalline solids ,2006,352( 3 ) :255 - 272.
  • 5Yang M,Qi H,Zhao Y,et al. Reduction of the 355 nm la- ser-induced damage initiators by removing the subsurface cracks in fused silica[ C ]. SPIE ,2011,8206 : 82061C.
  • 6Bulgakova N M, Bourkov I M. Phase explosion under uhashort pulsed laser ablation: modeling with analysis of metastable state of melt [ J ]. Applied surface science, 2002,197:41 - 44.
  • 7Liao Xing, Zhang Xiaozhong, Kazuyuki Takai, et al. Elec- tric field induced sp - to - sp conversion and nonlinear e- lectron transport in iron- doped diamond- like carbon thin film [ J ]. Journal of Applied Physics, 2010, 107 : 013709.
  • 8Gallais L, Cormont P, Rullier J L. Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation [ J ]. Opt. Express, 2009, 17 (26) : 23488 - 23501.
  • 9Suratwala T I, Miller P R, Bude J D, et al. HF-based etch- ing processes for improving laser damage resistance of fused silica optical surfaces [ J ]. Journal of the American Ceramic Society ,2011,94 (2) :416 - 428.
  • 10M D Feit, T I Suratwala, L L Wong, et al. Modeling wet chemical of surface flaws on fused silica [ J ]. Proc. Of SPIE, 2009,7504 : 75040L.

引证文献6

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部