期刊文献+

组分混合磷脂球胶束化动力学

Dynamics of Micelle Formation from Mixed Lipid Droplets
下载PDF
导出
摘要 两亲性磷脂分子能够形成各种不同形态的胶束,其结构形成不仅依赖于磷脂分子结构和组成,还依赖于两亲性分子的自组装路径.本工作采用粗粒化分子动力学方法模拟研究了二棕榈酰磷脂酰胆碱(DPPC)与十六烷基磷酸胆碱(HPc)混合磷脂球胶束化行为.通过调节DPPC/HPC的组分比例和磷脂球尺寸,观察到多种不同胶束结构形成,例如:球形和非球形(扁平或长椭球)囊泡、盘形胶束、单环或双环胶束和蠕虫状胶束.研究发现,由于原位胶束化作用,采用磷脂球作为初始态有利于形成囊泡和环形拓扑结构胶束.模拟结果表明,结合初始态结构设定同时调节磷脂分子组成是一种有效调控磷脂胶束结构的方法. Amphiphilic lipid molecules can form various micelles depending on not only their molecular composition but also their self-assembly pathway. In this work, coarse-grained molecular dynamics simulations have been applied to study the micellization behaviors of mixed dipalmitoylphosphatidylcholine (DPPC)/hexadecylphosphocholine (HPC) droplets. By vary- ing DPPC/HPC composition and the size of lipid droplets, various micelles such as spherical and nonspherical (oblate or prolate) vesicles, disk-like micelles, double or single ring-like and worm-like micelles were observed. It is found that the lipid droplet as an initial state favors forming vesicles and ring-like micelles due to in situ micellization. Our simulation results demonstrate that using special initial conditions combined with various molecular compositions is an effective way to tune lipid micellar structure.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第2期203-210,I0004,共9页 化学物理学报(英文)
基金 This work was supported by the National Natural Science Foundation of China (No.20974078 and No.91127046), Computation was carried out in High Performance Computing Center of Tianjin University.
关键词 DPPC HPC 分子动力学 磷脂小球 自组装 Dipalmitoylphosphatidylcholine, Hexadecylphosphocholine, Molecular dynam-ics, Lipid droplet, Self-assembly
  • 相关文献

参考文献46

  • 1D. E. Vance and J. E. Vance, Biochemistry of Lipids, Lipoproteins, and Membranes, 4th Edn., Amsterdam: Elsevier, 1 (2002).
  • 2X. Wang, Curr. Opin. Plant Biol. 7, 329 (2004).
  • 3B. H. Robinson, Self-Assembly, Amsterdam: IOS Press, 454 (2003).
  • 4L. V. Schafer, D. H. de Jong, A. Holt, A. J. Rzepiela, A. H. de Vries, B. Poolman, J. A. Killian, and S. J. Marrink, Proc. Natl. Acad. Sci. USA 108, 1343 (2011).
  • 5K. Yang and Y. Ma, J. Phys. Chem. B 113, 1048 (2009).
  • 6Y. Han, H. Yu, H. Du, and W. Jiang, J. Am. Chem. Soc. 132, 1144 (2010).
  • 7A. J. Markvoort, P. Spijker, A. F. Smeijers, K. Pieterse, R. A. van Santen, and P. A. J. Hilbers, J. Phys. Chem. B lla, 8731 (2009).
  • 8H. Huang, B. Chung, J. Jung, H. Park, and T. Chang, Angew. Chem. Int. Ed. 48, 4594 (2009).
  • 9X. He and F. Schmid, Phys. Rev. Lett. 100, 137802 (2008).
  • 10S. J. Marrink and A. E. Mark, J. Am. Chem. Soc. 125, 15233 (2003).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部