期刊文献+

基于氧化锌纳米颗粒-石墨烯异质结构的高性能紫外光探测器 被引量:1

High Performance Ultraviolet Photodetector Fabricated with ZnO Nanoparticles-graphene Hybrid Structures
下载PDF
导出
摘要 报道了一种基于水热反应制备无表面活性剂的氧化锌纳米颗粒-还原石墨烯异质结构的新方法.研究表明异质结构中氧化锌纳米晶体颗粒的平均直径为5nm,这些颗粒均匀分布在还原石墨烯表面,其密度可以通过反应物的浓度进行有效调节.并进一步构建了基于这种异质结构的光电探测器.该探测器对紫外光的响应很快,光电流响应变化可达四个量级.这些结果表明该异质结构特别适合作为替代材料用于设计和构建高性能的紫外光探测器件. Ultraviolet (UV) photodetector constructed by ZnO material has attracted intense research and commercial interest. However, its photoresistivity and photoresonse are still unsatisfied. Herein, we report a novel method to assemble ZnO nanoparticles (NPs) onto the reduced graphite oxide (RGO) sheet by simple hydrothermal process without any surfactant. It is found that the high-quality crystallized ZnO NPs with the average diameter of 5 nm are well dispersed on the RGO surface, and the density of ZnO NPs can be readily controlled by the concentration of the precursor. The photodetector fabricated with this ZnO NPs- RGO hybrid structure demonstrates an excellent photoresponse for the UV irradiation. The results make this hybrid especially suitable as a novel material for the design and fabrication of high performance UV photodector.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第2期225-230,I0004,共7页 化学物理学报(英文)
基金 This work is supported by MOST of China (No.2011CB921403), the Chinese Academy of Science, and the National Natural Science Foundation of China (No.10874165, No.90921013, No.11074231, and No. 11004179).
关键词 氧化锌纳米颗粒 还原石墨烯 异质结构 紫外光探测器 ZnO nanoparticle, Reduced graphite oxide, Hybrid structure, UV photodector
  • 相关文献

参考文献35

  • 1E. Monroy, F. Omnes, and F. Calle, Semicond. Sci. Technol. 18, R33 (2003).
  • 2M. Razeghi and A. Rogalski, J. Appl. Phys. 79, 7433 (1996).
  • 3C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, Nano Lett. 7, 1003 (2007).
  • 4O. Lupan, G. Chai, L. Chow, G. A. Emelchenko, H. Heiriricli, V. V. Ursaki, A. N. GtUzintsev, I:. M. Tiginyanu, and A. N. Redkin, Phys. Status Solidi A 207, 1735 (2010).
  • 5R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov T. J. Booth, T. Stauber, N. M. R. Peres, and A. K Geim, Science 320, 1308 (2008).
  • 6K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A Firsov, Science 306,666 (2004).
  • 7K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
  • 8Z. G. Geng, G. H. Zhang, Y. Lin, X. X. Yu, W. Z. Ren, Y. K. Wu, N. Pan, and X. P. Wang, Chin. J. Chem. Phys. 25, 494 (2012).
  • 9X.-Wangl S. M: Tab'akman, and H. Dai, J. Am. Chem Soc. 130, 8152 (2008).
  • 10S. P. Koenig, N. G. Boddeti, M. L. Dunn, and J. S Bunch, Nat. Nanotechnol. 6, 543 (2011).

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部