期刊文献+

基于KNN的多要素文本协调分类算法 被引量:1

Multiple Elements Text Coordinate Classification Algorithm Based on KNN
下载PDF
导出
摘要 文本分类能够帮助人们更有效地利用不断膨胀的海量网络信息,然而网络文本中已不再是以单一的文本内容形式出现,更多的是包含标题、关键字、摘要、正文等多种要素。若用传统的文本分类器,则效果明显不好。综合利用文本各要素,提出通过KNN算法对各要素进行文本分类,再使用模拟退火算法以及Bayes定理协调各要素比重的多要素文本协调分类算法。实验结果表明,该算法是可行的,并且使用该算法得到的分类器比仅使用文本内容得到的分类器具有更高的分类准确率。 Text classification can help people use massive information on the Internet effectively. However the information contains title, keywords, abstract, and contents rather than simple texts. There- fore, if we just use common text classifier, we can/t get the good effect. Considers all of the ele- ments in a text and uses KNN to do text classification. The proportion of each element is coordi- nated by the simulated annealing algorithm and Bayes theory. Gets a classification algorithm which applies to multiple elements of a text. The experimental result shows that this algorithm is feasible and the classification has more accuracy rate than a classification using only contents.
出处 《现代计算机》 2013年第7期9-12,共4页 Modern Computer
关键词 文本分类 KNN算法 多要素 模拟退火算法 Bayes定理 Text Classification KNN Algorithm Multiple Elements the Simulated Annealing Algorithm~ Bayes Theory
  • 相关文献

参考文献7

  • 1苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:384
  • 2D D Lewis. Naive(Bayes) at Forty: The Independence As- sumption in Information Retrieval. In: The lOth European Conf on Machine Leaning (ECML -98 ),New York: Berlin: Springer, 1998:4- 15.
  • 3Y Yang,X Lin. A Re-Examination of Text Categorization Methods. In: The 22nd Annum Int'l ACM SIGIR Conf on Research and Development in Information Retrieval,New York:ACM Press, 1999.
  • 4Y Yang,C G Chute. An Example-Based Mapping Method for Text Categorization and Retrieval. ACM Trans on Information Systems,1994,12(3):252-277.
  • 5E Wiener. A Neural Network Approach to Topic Spotting. The 4th Annual Symp on Document Analysis and Information Retrieval(SDAIR 95),Las Vegas,NV,1995.
  • 6R E Schapire,Y Singer. Improved Boosting Algorithms Using Confidence-Rated Predications. In: Proc of the 1 lth Annual Conf on Computational Learning Theory. Madison:ACM Press, 1998:80-91.
  • 7T Joachims. Text Categorization with Support Vector Ma- chines: Learning with Many Relevant Features. In: The lOth European Conf on Machine Learning (ECML-98). Berlin: Springer, 1998:137-142.

二级参考文献3

共引文献383

同被引文献14

引证文献1

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部