期刊文献+

核电用TP304不锈钢方管成型方法研究 被引量:1

Research on Formation Process for TP304 Stainless Steel Square Pipe for Nuclear Power Service
下载PDF
导出
摘要 通过变形力计算、有限元模拟分析、工艺试验等方法,对一种应用在AP1000核反应堆上的TP304不锈钢方管的成型方法进行了研究,开发出一种热挤压荒管在定径定壁后,经第1道次空拔、第2道次衬拉,最终制成方管的成型工艺,并确定了各项工艺参数。研究表明:采用固定模拉拔法生产核电用TP304不锈钢方管是可行的,且成品材质性能均匀一致,尺寸精度高。 The formation process for the TP304 stainless steel square pipe as applied to the AP1000 nuclear reactor is studied by means of such methods as deformation force calculation,finite element analysis,and technology testing,etc. As a result,a new formation process for the said pipe is developed,and the operation steps are:with the first pass,the hot-extruded blank pipe as sized is sink drawn,and with the second pass,the pipe is dawn with a mandrel,and finally it is turned into a square pipe as required. Moreover,all the parameters of the formation process are determined. The study shows that it is practical to employ the fixed-die drawing process to produce the TP304 stainless steel square pipe for nuclear power service,and that the finished product is in possession of material property homogeneity and high dimensional accuracy.
出处 《钢管》 CAS 2013年第2期27-31,共5页 Steel Pipe
关键词 AP1000反应堆 不锈钢 方管 TP304 固定模拉拔 模具设计 成型工艺 AP1000 reactor stainless steel square pipe TP304 fixed-die drawing die design formation process
  • 相关文献

参考文献6

二级参考文献33

共引文献3

同被引文献17

  • 1LEHTO P, REMES H, SAUKKONEN T, et al. Influence of grain size distribution on the Hall-Petch relationship of welded structural steel[J]. Materials Science and Engineering: A, 2014, 592: 28-39.
  • 2GALVIS E A R, HORMAZA W. Characterization of failure modes for different welding processes of AISI/SAE 304 stainless steels[J]. Engineering Failure Analysis, 2011, 18(7): 1791-1799.
  • 3VOORT G F V. Measuring the grain size of specimens with non-equiaxed grains[J]. Practical Metallography, 2013, 50(4): 239-251.
  • 4SCHWARTZ A J, KUMAR M, ADAMS B L, et al. Electron backscatter diffraction in materials science[M]. Berlin: Springer, 2009.
  • 5SABBAGH E H, SABBAGH H A, MURPHY R K, et al. Modeling anisotropic grain noise in eddy-current NDE: Reliability assessment of inverse problems[C]//Proceedings of the 35th Annual Review of Progress in Quantitative Nondestructive Evaluation, New York, 2009: 742-749.
  • 6GHOSHAL G; TURNER J A. Diffuse ultrasonic backscatter at normal incidence through a curved interface[J]. The Journal of the Acoustical Society of America, 2010, 128(6): 3449-3458.
  • 7DU H L, LONSDALE C, OLIVER J, et al. Evaluation of railroad wheel steel with lamellar duplex microstructures using diffuse ultrasonic backscatter[J]. Journal of Nondestructive Evaluation, 2013, 32(4): 331-340.
  • 8UNAL R, SARPUN I H, YALIM H A, et al. The mean grain size determination of boron carbide (B4C)-aluminium (A1) and boron carbide (B4C)-nickel (Ni) composites by ultrasonic velocity technique[J]. Materials Characterization, 2006, 56(3): 241-244.
  • 9PALANICHAMY P, JOSEPH A, JAYAKUMAR T, et al.Ultrasonic velocity measurements for estimation of grain size in austenitic stainless steel[J]. NDT & E International, 1995, 28(3): 179-185.
  • 10LAUX D, CROS B, DESPAUX G, et al. Ultrasonic study of UO2. Effects of porosity and grain size on ultrasonic attenuation and velocities[J]. Journal of Nuclear Materials, 2002, 300(2): 192-197.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部