期刊文献+

基于随机优化的大规模噪声数据集快速学习方法

Stochastic Optimization Based Fast Learning Method on Large-Scale Noisy Datasets
下载PDF
导出
摘要 针对包含噪声与干扰数据的大规模机器学习问题,采用非凸Ramp损失函数抑制噪声和干扰数据的影响,提出一种基于随机优化的非凸线性支持向量机快速学习方法,有效改进训练速度和预测精度.实验结果表明该方法降低学习时间,在MNIST数据集上较传统学习方法的训练时间降低4个数量级.同时在一定程度上改进预测速度,并有效提升分类器对噪声数据集的泛化性能. Aiming at large-scale machine learning problems with noise and interference data, the non-convex Ramp loss function is adopted to suppress the influences of noise and interference data, and a fast learning method is proposed for solving the non-convex linear support vector machines based on stochastic optimization. It effectively improves the training speed and the prediction accuracy. The experimental results manifest that the proposed method greatly reduces the learning time, and on the MNIST dataset the training time is reduced by 4 orders of magnitude compared to the traditional learning method. Meanwhile, it improves the prediction speed in a sense and greatly enhances the generalization performance of the classifiers for noisy dataset.
作者 王家宝
出处 《模式识别与人工智能》 EI CSCD 北大核心 2013年第4期366-373,共8页 Pattern Recognition and Artificial Intelligence
关键词 大规模机器学习 支持向量机 Ramp损失 随机梯度下降 Large-Scale Machine Learning, Support Vector Machine, Ramp Loss, Stochastic GradientDescent
  • 相关文献

参考文献24

  • 1Ertekin S, Bottou L, Giles C L. Non-Con vex Online Support VectorMachines. IEEE Trans on Pattern Recognition and Machine Intelli-gence, 2011,33(2).: 368-381.
  • 2Joachims T. Making Large-Scale SVM Learning Practical //Csholkopf B, Bulges C J C, Smola A J,eds. Advances in KernelMethods : Support Vector Learning. Cambridge,USA : MIT Press,1999: 169-184.
  • 3Platt J C. Fast Training of Support Vector Machines Using Sequen-tial Minimal Optimization // Csholkopf B, Burges C J C, Smola AJ, eds. Advances in Kernel Methods: Support Vector Learning.Cambridge, USA: MIT Press, 1999: 185-208.
  • 4Joachims T. Training Linear SVMs in Linear Time // Proc of the12th ACM SIGKDD International Conference on Knowledge Discov-ery and Data Mining. Philadelphia, USA, 2006 : 217-226.
  • 5Hsu C W, Lin C J. A Simple Decomposition Method for SupportVector Machines. Machine Learning, 2002 , 46(1/2/3). : 291-314.
  • 6Er Smola J, Vishwanathan S V N,Lenicta Q. Bundle Methods forMachine Learning // Platt J C, Koller D,Singer Y, et al, eds. Ad-vances in Neural Information Processing Systems. Cambridge,USA :MIT Press, 2008, XX: 1377-1384.
  • 7Hsieh C J, Chang K W,Lin C J,et al. A Dual Coordinate DescentMethod for Large-Scale Linear SVM // Proc of the 25 th InternationalConference on Machine Learning. Helsinki,Finland,2008 : 408 -415.
  • 8Chang K W, Hsieh C J,Lin C J. Coordinate Descent Method forLarge-Scale L 2>Loss Linear SVM, Journal of Machine Learning Re-search, 2008, 9: 1369-1398.
  • 9Bottou L,Bousquet O. The Tradeoffs of Large Scale Learning //Platt J C, Koller D, Singer Y,et al, eds. Advances in Neural In-formation Processing Systems. Cambridge, USA: MIT Press, 2008,XX: 161-168.
  • 10Kivinen J, Smola A J, Williamson R C. Online Learning with Ker-nels. IEEE Trans on Signal Processing, 2004, 52(8).: 2165 -2176.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部