期刊文献+

分担值与具有重零点的亚纯函数正规族

Shared Values and Normal Families of Meromorphic Functions with Multiple Zeros
原文传递
导出
摘要 主要证明了:设k≥2是一个正整数,M是一个正数,c是一个非零有穷复数.F是区域D内的一族亚纯函数,其中每个函数的零点的重数至少是k.若对于F中的任意函数f,f(z)=0f^((k))(x)=0,f^((k))(z)=c■|f^((k+1))(z)|≥M,则F在D内正规,其中c≠0是必需的. It is mainly proved: let k ≥ 2 be a positive integer, M a positive number,let c (≠ 0) be a finite value, and let F be a family of meromorphic functions in a domain D, all of whose zeros are of multiplicity k at least. If, for each function f ∈F,f(z) = 0 f(k)(z) = 0, f(k)(z) = c =〉 |f(k+1)(z)| 〈 M, then F is normal in D. And c ≠ 0 is necessary.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2013年第3期343-352,共10页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11071083)
关键词 亚纯函数 分担值 正规族 meromorphic functions shared values normal families
  • 相关文献

参考文献15

  • 1Hayman W. K., Meromorphic Functions, Clarendon Press, Oxford, 1964.
  • 2Yang L., Value Distribution Theory, Springer-Verlag, Berlin, 1993.
  • 3Gu Y. X., Pang X. C., Fang M. L., The Theory of Normal Families and Its Application (in Chinese), Science Press, Beijing, 2007.
  • 4Schwick W., Sharing values and normality, Arch. Math., 1992, 59: 50-54.
  • 5Fang M. L., Zalcman L., Normal families and shared values of meromorphic functions III, Comput. Methods Funct. Theory, 2002, 2(2): 385-395.
  • 6Chang J. M., Normality concerning shared values (in Chinese), Sci. Sin. Math., 2009, 39(4): 399-404.
  • 7Huang X. J., Liu Z. X., A normal criterion concerning shared values (in Chinese), Acta Math. Sci. Ser. A Chin. Ed., 2011, 31(2): 540-545.
  • 8Fang M. L., Zalcman L., A note on normality and shared values, J. Aust. Math. Soc., 2004, 76: 141-150.
  • 9Zalcman L., Normal families: New perspectives, Bull. Amer. Math. Soc., 1998, 35: 215-230.
  • 10Pang X. C., Zalcman L., Normal families and shared values, Bull. London Math. Soc., 2000, 32: 325-331.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部