期刊文献+

含参集值弱向量平衡问题解集映射的半连续性 被引量:3

On the Semicontinuity of the Solution Set Map to Parametric Set-Valued Weak Vector Equilibrium Problems
原文传递
导出
摘要 在线性度量空间中,运用标量化技巧在没有单调性与C-凹性假设下得到了含参集值弱向量平衡问题解集映射上/下半连续性的充分性条件.所得结果改进了已有文献的相应结果,并通过例子验证了所得结果. In this paper, using a scalarization technique, we provide sufficient conditions for the upper/lower semicontinuity of the solution mappings to parametric setvalued weak vector equilibrium problems without monotonicity and C-concavity in linear metric spaces. These results improve the recent ones in the literature. Some examples are given for illustration of our results.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2013年第3期391-400,共10页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(10831009 11271389 11271391) 重庆市自然科学基金(CSTC 2011BA0030 2012jjA00016) 重庆市攻关项目(CSTC 2011AC6104) 重庆市优化与系统工程重点实验室课题
关键词 含参集值弱向量平衡问题 f-有效解 上半连续性 下半连续性 标量化 parametric set-valued weak vector equilibrium problem f-efficient solu- tion upper semicontinuity lower semicontinuity scalarization
  • 相关文献

参考文献16

  • 1Giannessi F., Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, Kluwer, Dor?drecht, 2000.
  • 2Li S. J., Chen G. Y., Teo K. L., On the stability of generalized vector quasivariational inequality problems, J. Optim. Theory Appl., 2002, 113: 283-295.
  • 3Cheng Y. H., Zhu D. L., Global stability results for the weak vector variational inequality, J. Glob. Optim., 2005, 32: 543-550.
  • 4Anh L. Q., Khanh P. Q., Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems, J. Math. Anal. Appl., 2004, 294: 699-71l.
  • 5Anh L. Q., Khanh P. Q., On the stability of the solution sets of general multivalued vector quasiequilibrium problems, J. Optim. Theory Appl., 2007, 135: 271-284.
  • 6Huang N. J., Li J., Thompson H. B., Stability for parametric implicit vector equilibrium problems, Math. Comput. Model, 2006, 43: 1267-1274.
  • 7Gong X. H., Continuity of the solution set to parametric weak vector equilibrium problems, J. Optim. Theory Appl., 2008, 139: 35-46.
  • 8Gong X. H., Yao J. C., Lower semicontinuity of the set of efficient solutions for generalized systems, J. Optim. Theory Appl., 2008, 138: 197-205.
  • 9Kimura K., Yao J. C., Sensitivity analysis of solution mappings of parametric vector quasi-equilibrium problems, J. Glob. Optim., 2008, 41: 187-202.
  • 10Xu S., Li S. J., A new proof approach to lower semicontinuity for parametric vector equilibrium problems, Optim. Lett., 2009, 3: 453-459.

同被引文献29

  • 1马先峰,廖公夫,李勇.Some Dynamical Properties in Set-valued Discrete Systems[J].Northeastern Mathematical Journal,2005,21(1):5-8. 被引量:2
  • 2Li S J, Chen G Y, Teo K L. On the stability of generalized vector quasivariational inequality problems [ J ]. J Optim Theory Appl, 2002,113:283 - 295.
  • 3Cheng Y H, Zhu D L. Global stability results for the weak vector variational inequality[ J]. J Glob Optim,2005 ,32 :543 -550.
  • 4Huang N J, Li J, Thompson H B. Stability for parametric implicit vector equilibrium problems [ J1. Math Comput Model,2006, 43 : 1267 - 1274.
  • 5Gong X H. Continuity of the solution set to parametric weak vector eqtfilibrium problems[J]. J Optim Theory Appl ,2008 ,139 :35 -46.
  • 6Chen C R, Li S J, Teo K L. Solution semicontinuity of parametric generalized vector equilibrium problems[ J]. J Glob Optim, 2009,45 : 309 - 3 1 8.
  • 7Cben C R, Li S J. On the solution continuity of parametric generalized systems [ J ]. Pacific J Optim,2010,6 : 141 - 151.
  • 8Cben B, Gong X H. Continuity of the solution set to parametric set - valued weak vector equilibrium problems [ J . Pacific J Optim,2010,6:511 - 520.
  • 9Li S ,1, Fang Z M. Louer semicontinuity d the solution mappings to a parametric generalized Ky Fan inequality[ J]. J Optim The- oy Appl,2010,147 :507 - 515.
  • 10Peng Z Y, Yang X M, Peng J W. On the lower semicontinuity of the solution mappings to parametric weak generalized Ky Fan inequality [ J ] J Optim Theory Appl,2012,152:256 - 264.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部