期刊文献+

基于BEMD与自适应维纳滤波的图像降噪 被引量:11

Image denoising method based on BEMD and adaptive Wiener filter
下载PDF
导出
摘要 自适应维纳滤波器是一种经典的线性降噪滤波器,较其他线性滤波器能够更好地解决边界模糊的问题。然而由于含噪图像的噪声主要集中于它的高频部分,而图像的低频部分所含有的噪声较高频部分则小很多。自适应维纳滤波算法对图像中所有频率成份都不加区分地进行滤波降噪处理,因而它不能得到更为令人满意的结果。提出了一种将二维经验模态分解和自适应维纳滤波相结合的图像去噪方法,通过将图像分解为不同频率成份的子图像并对各子图像采用不同的降噪处理,从而更好地对含噪图像进行降噪。实验结果表明,算法相对于自适应维纳滤波算法降噪效果更好。 Adaptive wiener filter, a classical linear denoising filter, can solve the problem of fuzzy boundary more effectively than other linear filter. However, the noise mainly exists in high frequency part of a picture, and much less in the part of low frequency, while adaptive wiener filter tends to deal with the noise without considering the different frequency componets of the picture, therefore, it can not get a satisfactory result. A new method combining BEMD method and adaptive wiener filter is proposed in this paper, which can denoise better through decomposing a picture into different part accoding to the different frequency and then denoising seperately. The result of the experiment in this paper shows that the proposed method performs much better than adaptive wiener filter.
出处 《计算机工程与应用》 CSCD 2013年第10期156-158,231,共4页 Computer Engineering and Applications
基金 云南省自然科学研究基金(No.2009ZC049M) 昆明理工大学博士基金(No.KKSY201203030)
关键词 二维经验模态分解(BEMD)算法 自适应维纳滤波算法 降噪 Bidimensional Empirical Mode Decompositio(rBEMD)method adaptive wiener method denoise
  • 相关文献

参考文献11

  • 1Huang N E,Shen Z,Long S,et aI.The empirical mode de- composition and the Hilbert spectrum for nonlinear and non- stationary time series analysis[J].Proc R Soc Lond Ser A, 1998,454 : 903-905.
  • 2Linderhed A.Compression by image empirical mode decom- position[C]//IEEE International Conference on Image Process- ina.Piscatawav, USA : IEEE, 2005 : 553-556.
  • 3Damerval C.A fast algorithm for bidimensional EMD[J].Sig- nal processing Letters, 2005,12 ( 10 ) : 701-704.
  • 4Nunes J C, Bouaoune Y, Delechelle E.hnage analysis by bidi- mensional empirical mode decomposition[J].Image and Vision Computing, 2003,21(12) : 1019-1026.
  • 5周欣,李衷怡.基于二维经验模式分解的图像去噪[J].计算机与数字工程,2007,35(11):93-94. 被引量:6
  • 6秦勃,时鹏.经验模式多尺度图像分解[J].工程图学学报,2002,23(4):73-78. 被引量:7
  • 7Mehmet K O, Sezan M,Tekalp A M.Adaptive motion-com- pensated filtering of noisy image sequences[J].IEEE Transac- tions on Circuits and Systems for Video Technology,1993,3 (4) : 277-290.
  • 8Kozek M, Sinanovic S.Identification of Wiener models using optimal local linear models[J].Simulation Modelling Practice and Theory,2008,16: 1055-1066.
  • 9Jin F, Fieguth P, Jemigan E.Adaptive wiener fltering of noisy images and image sequences[C]//Proceedings 2003 Interna- tional Conference on Image Processing,2003,2(3):349-352.
  • 10Darwin T K, Alexander A S, Timothy C S, et al.Adaptive noise smoothing filter for images with signal-dependent noise[J].IEEE Trans on PAMI, 1985,7(2) : 165-177.

二级参考文献6

  • 1[1]Farin G. Triangular Bemstein-Bezier Patches[J]. CAGD, 1986, 3: 83~127.
  • 2[2]Norden E Huang, et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and nonstationary time series analysis [A]. In: Proc. R. Soc [C]. Lond. A 1998, 454: 903~995.
  • 3Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non - stationary time series analysis [ J ]. Proc. R. Soc Lond. A, 1998, 454:903 - 995
  • 4J. C. Nunes, Y. Bouaoune, E. Delechelle, “Image analysis by bidimensional empirical mode decomposition [ J ]. Image and Vision Computing,2003,21 ( 12 ) : 1019 - 1026
  • 5秦勃,时鹏.经验模式多尺度图像分解[J].工程图学学报,2002,23(4):73-78. 被引量:7
  • 6黄大吉,赵进平,苏纪兰.希尔伯特-黄变换的端点延拓[J].海洋学报,2003,25(1):1-11. 被引量:124

共引文献11

同被引文献95

引证文献11

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部