期刊文献+

在线商品评论效用排序模型研究 被引量:28

Study on the Reviews Effectiveness Sequencing Model of Online Products
原文传递
导出
摘要 从研究在线评论效用的影响因素入手,建立评论效用指标体系。采用模糊层次分析法确定指标的相对权重,通过语义挖掘对评论内容的各项指标进行量化处理,最后统计每条评论的效用总分。模型应用部分选取国内淘宝商城某商品的近2 000条商品评论信息进行实证分析。研究对比发现,经过排序模型处理后,大量的无用评论被后置,新排序中靠前的评论内容信息含量非常丰富,评论效用较高,能够有效地辅助其他消费者进行购物决策。 On the basis of studying the influencing factors of online reviews effectiveness, a review effectiveness index system is established. The fuzzy analytic hierarchy process is adopted to determine the relative weight of indexes, various indexes of reviews content are quantized by semantic mining, and the total effectiveness score is calculated for each review. In terms of the model application of this study, nearly 2 000 reviews on a product of China' s Tmall are selected to make an empirical analysis. The study and comparison indicates that, after being processed by the sequencing model, a large number of useless reviews are postponed, and those reviews at the forefront of the new sequence are very rich in information content and high in effectiveness, and can assist consumers in making purchase decisions effectively.
作者 李志宇
出处 《现代图书情报技术》 CSSCI 北大核心 2013年第4期62-68,共7页 New Technology of Library and Information Service
基金 国家大学生创新性实验计划(A类)基金项目"本地化电子商务平台的发展机制及其优化研究"(项目编号:A00750)的研究成果之一
关键词 信息挖掘 在线评论 效用排序 Information mining Online reviews Effectiveness sequencing
  • 相关文献

参考文献20

  • 1Chevalier J A, Mayzlin D. The Effect of Word of Mouth on Sales : Online Book Reviews [ J . Journal of Marketing Research,2006,43 (3) :345 -354.
  • 2Ye Q, Zhang Z Q, Law R. Sentiment Classification of Online Re- views to Travel Destinations by Supervised Machine Learning Ap- proaches[ J ]. Expert Systems with Applications, 2009, 36 ( 3 ) : 6527 - 6535.
  • 3张红斌,李广丽.商品在线评价的情感倾向性分析研究[J].现代图书情报技术,2012(10):61-66. 被引量:4
  • 4杨铭,祁巍,闫相斌,李一军.在线商品评论的效用分析研究[J].管理科学学报,2012,15(5):65-75. 被引量:85
  • 5Miao Q L, Li Q D, Dai R W. AMAZING : A Sentiment Mining and Retrieval System [ J ]. Expert Systems with Applications, 2009, 36 (3) : 7192 -7198.
  • 6Liu J J,Cao Y B,Lin C Y,et al. Low -quality Product Review De- tection in Opinion Summarization[ C ]. In: Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Prague: Associa- tion Computational Linguistics,2007:334 -342.
  • 7Zhang Z. Weighing Stars: Aggregating Online Product Reviews for Intelligent E - commerce Applications [ J ]. IEEE Intelligent Sys- tems, 2008, 23(5):42-49.
  • 8郝媛媛,叶强,李一军.基于影评数据的在线评论有用性影响因素研究[J].管理科学学报,2010,13(8):78-88. 被引量:239
  • 9彭岚,周启海,邱江涛.消费者在线评论有用性影响因素模型研究[J].计算机科学,2011,38(8):205-207. 被引量:54
  • 10Lau R Y K, Liao S S Y, Xu K Q. An Empirical Study of Online Consumer Review Spam : A Design Science Approaeh [ C ]. In : Proceedings of the 31st International Conference on Information Sys- tems,St. Louis,USA. Aceociation of Information Systems,2010.

二级参考文献130

  • 1刘群,张华平,俞鸿魁,程学旗.基于层叠隐马模型的汉语词法分析[J].计算机研究与发展,2004,41(8):1421-1429. 被引量:198
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3郭国庆,杨学成,张杨.口碑传播对消费者态度的影响:一个理论模型[J].管理评论,2007,19(3):20-26. 被引量:100
  • 4Somasundaran S,Ruppenhofer J,Wiebe J.Detecting Arguing and Sentiment in Meetings[C].In:Proceedings of Workshop on Discourse and Dialogue(SIGdial'2007),Antwerp,Belgium,September 2007:311 -319.
  • 5Yang C,Lin K,and Chen H H.Emotion Classification Using Web Blog Corpora[C].In:Proceedings of the 2007 IEEE/WIC/ACM International Conference on Web Intelligence(WI-IAT' 2007),Silicon Valley,U.S.A.2007:275 -279.
  • 6Fung G P,Yu J X,Lu H.The Predicting Power of Textual Information on Financial Markets[J].IEEE Intelligent Informatics Bulletin,2005,5(1):1 -10.
  • 7Zhuang L,et al.Movie Review Mining and Summarization[C].In:Proceedings of ACM International Conference on Information and Knowledge Management(CIKM'2006),Arlington,Virginia,U.S.A.2006:1-7.
  • 8Hu M,Liu B.Mining and Summarizing Customer Reviews[C].In:proceeding of the 10th Knowledge Discovery and Data Mining Conference(KDD'2004),Seattle,WA,U.S.A.2004:168-177.
  • 9Kim S.M,et al.Determining the Sentiment of Opinions[C].In:Proceedings of the 20th International Conference on Computational Linguistics,Geneva,Switzerland.2004:1-8.
  • 10Popescu A M,Etzioni O.Extracting Product Features and Opinions from Reviews[C].In:Proceedings of Empirical Methods in Natural Language Processing(EMNLP' 2005),Vancouver,B.C.,Canada.2005:1 -8.

共引文献1904

同被引文献262

引证文献28

二级引证文献200

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部