期刊文献+

自适应H_∞滤波实现MIMO-OFDM时变信道估计 被引量:3

Time-varying Channel Estimation of MIMO-OFDM Wireless Systems Based on Adaptive H_∞ Filter
下载PDF
导出
摘要 基于多输入多输出-正交频分复用(MIMO-OFDM)无线系统,以H∞滤波理论为基础,提出一种新的MIMO-OFDM时变信道估计算法.依据H∞滤波原理,首先建立起一个线性的动态系统,系统输入和输出分别为未知干扰(包括背景噪声及其模型误差)和信道状态估计误差;然后,以该系统的H∞范数(即系统输入输出能量增益)作为代价函数,提出一种自适应H∞滤波算法;该算法的设计准则为,在未知干扰最大的情况下使得信道估计误差小于一个给定的界限(称为干扰水平值),并且该干扰水平值可以根据当前无线环境的信噪比自适应地更新变化.由于该自适应H∞滤波算法未对噪声分布做任何先验假设,因此在非高斯噪声下可以获得较好的信道估计性能.计算机仿真实验结果证明了该算法的有效性. An adaptive H∞ filter is proposed for time-varying channel estimation of the multi-input multi-output orthogonal frequency division multiplexing ( MIMO-OFDM ) wireless communication systems based on H∞ filtering theory. Mainly on the H∞ filtering principle, a dynamic system is formulated firstly, whose inputs are unknown disturbances including noise and model error, output is the channel estimation error. Then, making the H∞ norm of this dynamic system as a cost function, an adaptive H∞ filtering algorithm is proposed whose criterion is to guarantee that the worst-cast effect of disturbance on channel estimation error is smaller than a given boundary ( called disturbance level ), which is adaptively updating on the signal-noise-ratio of the current wireless system. Since any assumption on the noise distribution is not make in the proposed adaptive H∞ filter, the good channel estimation performance can be achieved even in the non-Gaussian noise. Simulation results show the effectiveness of the algorithm.
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第5期1012-1015,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61101115)资助 辽宁大学青年科研基金项目(2010LDQN02)资助
关键词 多输入多输出 正交频分复用 信道估计 H∞滤波 MIMO OFDM channel estimation H∞ filtering
  • 相关文献

参考文献4

二级参考文献49

  • 1Mukkavilli K K,Sabharwal A,Erkip E,et al.On beamforming with finite rate feedback in multiple-antenna systems[J].IEEE Trans.Inform.Theory,2003,49(10):2562-2579.
  • 2Gesbert D,Alouini M S.How much feedback is multi-user diversity really worth?[C].IEEE International Conference on Communications,2004,234-238.
  • 3Nguyen H,Brouet J,Kumar V,et al.Compression of associated signaling for adaptive multi-carrier systems[C].IEEE VTC 2004 Spring,2004,1916-1919.
  • 4Zeng Er-lin,Zhu Shi-hua,Xu Ming.CQI feedback overhead reduction for multicarrier MIMO transmission[J].IEICE Transactions on Communications,2008,E91 B(7):2310-2320.
  • 5David S Taubman,Michael W Marcellin.JPEG2000:image compression,fundamentals,standards and practice[M[M].Dordrecht,The Netherlands:Kluwer Academic Publishers,2001.
  • 6Da-Shan Shiu,Foschini G J,Gans M J,et al.Fading correlation and its effect on the capacity of Multi-Element antenna systems[J].IEEE Trans.on Communications,2000,48(3):502-513.
  • 7Simeone O,Spagnolini U.Combined linear pre-equalization and BLAST equalization with channel correlation feedback[J].IEEE Communications Letters,2003,7(10):487-489.
  • 8Xiao Shuang,Xiao Xiao,Li Bei-ping,et al.Adaptive subcarrier allocation for multiuser MIMO OFDM systems in frequency selective fading channel[C].IEEE WCNMC'05,2005,61-64.
  • 9van Zelst A,Hemmerschmidt J S.A single coefficient spatial correlation model for multiple-input multiple output(MIMO)radio channels[J].Proc.General Assembly of the Int.Union of Radio Science(URSI),Maastricht,The Netherlands,August 2002.
  • 10ANASTASIOS S, NAOFAL A D. Impact of space-time block codes on 802.11 network throughput[J]. IEEE Transaction on Wireless Communications, 2003,2(5): 1029-1039.

共引文献35

同被引文献22

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部