期刊文献+

无标度特性下的网络舆情演化迁移元胞模型 被引量:5

Tow-stages Model for the Evolution of Network Public Opinion on Scale-free Characteristics
下载PDF
导出
摘要 通过实证分析网络舆情演化的无标度特性,将网络舆情演化分成两个阶段:观点形成阶段和观点交互阶段.构建BA'模型,提出无标度特性下的观点形成算法;结合作者前期研究成果迁移元胞自动机网络舆情演化模型,提出了无标度特性下的观点交互算法;观点形成算法和观点交互算法组成了无标度特性下的网络舆情演化二阶段模型.对网络舆情演化的二阶段模型进行仿真,模拟现实网络舆情演化的观点形成和观点交互过程,绘制出倾向度状态转换图和粗细粒度倾向度曲线;经过仿真分析,揭示了网民观点倾向度和网民素养对网络舆情演化的影响规律. Through an empirical analysis for scale-free characteristics of the evolution of network public opinion, the evolution of net- work public opinion is divided into two stages: a view form stage and a view interactive stage. BA 'model is constructed, and the view form algorithm is put forward on scale-free characteristics. With the previous study results, which is a model for the evolution of public opinion in the web based on migration cellular automata, and the view interactive algorithm is put forward on scale-free charac- teristics. View form algorithm and view interactive algorithm are composed of a tow-stages model for the evolution of public opinion on scale free characteristics. By the simulation of the view form and view interactive process of the tow-stages model for the evolution of public opinion, they are drawn which are the orientation-state transition diagram, the curve of orientation course grained and the curve of orientation fine grained. Through the simulation analysis, a law is revealed which is the law of the influence of netizens view-orientation and netizens literacy on the evolution of network public opinion.
作者 王根生
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第5期1085-1090,共6页 Journal of Chinese Computer Systems
基金 国家社科基金项目(09BTQ034)资助
关键词 无标度特性 二阶段模型 观点倾向度 网民素养 scale-free characteristics tow-stages model netizens view-orientation netizens literacy
  • 相关文献

参考文献5

二级参考文献55

共引文献75

同被引文献74

  • 1赵玲,张静.基于羊群效应的微博用户从众行为分析[J].大连理工大学学报(社会科学版),2013,34(4):92-97. 被引量:17
  • 2中国互联网信息中心.第34次中国互联网络发展状况统计报告[R/OL].(2014-07-21)/[2014-08-13].http://www.ennie.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/201403/t20140305_46240.htm.
  • 3曾祥平,方勇,袁媛,杨玲,肖志宇.基于元胞自动机的网络舆论激励模型[J].计算机应用,2007,27(11):2686-2688. 被引量:36
  • 4Hegselmann R, Krause U. Opinion Dynamics and Bounded Confidence: Models, Analysis and Simulation [J]. Journal of Artificial Societies and Social Simulation, 2002, 5(3): 2-34.
  • 5Slanina F, Lavicka H. Analytical Results for the Sznajd Model of Opinion Formation [J]. The European Physical Journal B, 2003, 35(2): 279-288.
  • 6Schulze C. Sznajd Opinion Dynamics with Global and Local Neighbourhood [J]. International Journal of Modern Physics C, 2004, 15(6): 867-872.
  • 7Rodrigues F A, da F Costa Luciano. Surviving Opinions inSznajd Models on Complex Network [J]. International Journal of Modern Physics C, 2005, 16(11): 1785-1792.
  • 8Toscani G. Kinetic Models of Opinion Formation [J]. Communications in Mathematical Sciences, 2006, 4(3): 481-496.
  • 9Zhou J, Liu Z, Li B. Influence of Network Structure on Rumor Propagation [J]. Physics Letters A, 2007, 368(6): 458-463.
  • 10Newman M E J. The Structure and Function of Complex Networks [J]. SIAM Review, 2003, 45(2): 167-256.

引证文献5

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部