期刊文献+

基于结构相似保真的图像稀疏表示模型 被引量:1

Image Sparse Representation Model based Structural Similarity
下载PDF
导出
摘要 过完备图像稀疏表示是一种最新的图像表示模型,采用过完备字典中原子的线性组合形式实现图像的稀疏表示.传统的过完备图像稀疏表示模型采用重建误差的平方和作为保真项.该保真项没有充分考虑到人眼对图像的感知特性,无法度量图像中边缘、轮廓、纹理等局部几何结构的变化.本文基于过完备稀疏表示理论思想,建立了新的稀疏性正则化的图像稀疏表示模型.模型中的正则项约束图像表示系数的稀疏性,保真项采用更符合视觉感知的结构相似性度量.基于正交匹配追踪算法,提出了基于结构相似度的正交匹配追踪算法.实验结果表示,新的模型能够更好地重构图像的结构信息,获得更好的重建视觉效果. Overcomplete sparse representation is a new image representation model, in which the image is represented by a sparse linear combination of atoms for given redundant dictionary. Traditionally, sparse representation model use mean squared error as a fidelity term. However, the mean squared error fidelity term is not coincident with human visual perception, and can not measure the variations of edge, contour and texture. In terms of sparse represnetations theory, a new sparsity regularized sparse representation model is proposed. The regularization terms constrains the sparsity of image coefficients. The fidelity term is supposed as structural similarity, which is more consistent in visual perception. According to the orthogonal matching pursuit, a new orthogonal orthogonal matching pursuit based structural similarity is proposed. Experimental results show the new model can preserve the structures better and provide better visual quality.
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第5期1198-1200,共3页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61162022)资助 江西省自然科学基金项目(2009GZW0020 2010GZW0049)资助 江西省教育厅科技项目(GJJ12632)资助
关键词 稀疏表示 结构相似度 正交匹配追踪 视觉感知 sparse representation structural similarity orthogonal matching pursuit visual perception
  • 相关文献

参考文献1

二级参考文献14

  • 1司菁菁,王成儒,程银波.基于改进的正交FRIT的分层图像编码算法[J].仪器仪表学报,2006,27(10):1283-1287. 被引量:1
  • 2舒正华,邹道文,汪胜前,刘国栋,邓松.一种基于ridgelet和wavelet的混合编码压缩算法[J].江西师范大学学报(自然科学版),2007,31(2):111-114. 被引量:1
  • 3Candes E J,Donoho D L.Curvelets-a surprsingly effective nonadaptive representation for objects with edges[A].In:Cohen A,Rabut C,Schumaker L,Editors:Curves and Surface Fitting[C],Nashville,Tennessee,USA:Vanderbilt University Press,1999.
  • 4Candes E J.Ridgelet:Theory and Applications[D].Department of Statistics,Stanford University,Stanford,CA,USA,1998.
  • 5Candes E J,Demanet L,Donoho D L,et al.Fast discrete curvelet transforms[J].Multiscale Modeling Simulation,2005,5 (3):861-899.
  • 6Do M N,Vetterli M.The contourlet transform:an efficient directional multiresolutian image representation[J].IEEE Transactions on Image Processing,2005,14(12):2091-2106.
  • 7Candes E J,Donoho D L.Ridgolets:A key to higher-dimensional intermittency[J].Philosophical Transactions of the Royal Society of London Series A,1999,357(1760):2495-2509.
  • 8Candes E J.Harmonic analysis of neural networks[J].Applied and Computational Harmonic Analysis,1999,6(2):197-218.
  • 9Candes E J.Monoscale ridgelet for the representation of images with edges[R].Technology Report,1999-27,Deptartment Statistic,Stanford University,Stanford,CA,USA,1999.
  • 10Mallat S,Zhang Z.Matching pursuit with time-frequency dictionaries[J].IEEE Transactions on Signal Processing,1993,41 (12):3397-3415.

共引文献5

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部