期刊文献+

均匀聚光条件下聚光倍数与太阳电池输出功率关系研究 被引量:4

RELATIONSHIP BETWEEN CONCENTRATION RATTO AND OUTPUT POWER OF SOLAR CELLS UNDER UNIFORM CONCENTRATING CONDITION
下载PDF
导出
摘要 在聚光条件下的太阳能光伏发电系统中,由于温度的影响,输出功率随聚光倍数的增加而先增大后减小。为了找到合理的聚光倍数,使光伏系统获得最大的输出功率,以最常用的单晶硅太阳电池为例,在保证电池温度小于其工作温度上限的前提下,分析光伏系统的散热能力、电池与散热器间热阻和太阳辐射能流密度3个因素与聚光倍数之间的关系,同时给出一定条件下最大输出功率对应的聚光倍数表达式。结果表明,增强光伏系统的散热能力、降低太阳电池与散热器之间的热阻和使用均匀聚光照射太阳电池,是提高光伏发电系统所能承受的最大聚光倍数的3个有效途径。 In the PV system under concentrating condition, the output power will increase first the decrease along with the increasing of the contrating ratio because of the effect of temperture. In order to find a reasonable concen-tration ratio and get the maximum output power under the premise which the working temperature of a solar cell can't be higher than the limit temperature, taking the monocrystalline silicon solar cell as the example, the con- centrating flux was supposed to be uniform and then the relationship between the concentration ratio and dissipation capacity of the PV system, the thermal resistance of solar cell and heat sink, and the solar radiation energy flux density were considered and analyzed. And the expression of the biggest concentration ratio corresponding to the maximum output power is given. The results showed that enhancing the cooling capacity of a PV system, reducing the thermal resistance between the solar cell and radiator and making the concentration light more uniform are three effective ways to increase the maximum concentration ratio for PV system.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2013年第4期659-663,共5页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(50736005)
关键词 太阳能 聚光倍数 输出功率 光伏系统 solar energy concentration ratio output power PV system
  • 相关文献

参考文献6

二级参考文献56

  • 1赵建华.过去十年硅太阳电池研究的进展[J].电源技术,1994,18(6):18-24. 被引量:1
  • 2葛新石,叶宏.PV/T电、热联产系统在理想条件下的性能简化分析[J].太阳能学报,2006,27(1):30-35. 被引量:17
  • 3丁金磊,程晓舫,翟载腾,查珺,茆美琴.决定晶体硅太阳电池工作状态的独立参量的确定[J].中国工程科学,2007,9(4):94-98. 被引量:4
  • 4Luque A, Sala G, Luque-Heredia I. Photovoltaic Concentration at the Onset of its Commercial Development [J]. Prog. Photovolt: Res. Appl., 2006, 14:413-428.
  • 5Royne A, Dey C J. Cooling of Photovoltaic Cells Under Concentrated Illumination: a Critical Review [J]. Solar Energy Materials & Solar Cells, 2005, 86(4): 451-483.
  • 6Kuo C T, Shin H Y, Hong H F, et al. Development of the High Concentration Ⅲ-Ⅴ Photovoltaic System at INER, Taiwan [J]. Renewable Energy, 2009, 34(8): 1931-1933.
  • 7Luque A, Sala G, Arboiro J C. Electric and Thermal Model for Non-uniformly Illuminated Concentration Cells [J]. Solar Energy Materials & Solar Cells, 1998, 51: 269- 290.
  • 8Maccari A, Montecchi M. An Optical Profilometer for the Characterization of Parabolic Trough Solar Concentrators [J]. Solar Energy, 2007, 81(2): 185-194.
  • 9O' Neill M J, McDanal A J, Jaster P A. Development of terrestrial concentrator modules using high-efficiency multijunction solar cells [ A ]. 29th IEEE PVSC [ C ]. New Orleans,2002:1369-1372.
  • 10Andreev V M, Grilikhes V A, Rumyantsev V D. Photovoltaic conversion of concentrated sunlight [ M ]. Chichester :John, Wiley & Sons Ltd, 1997.

共引文献68

同被引文献39

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部