期刊文献+

超微秸秆光合产氢反应器流场数值模拟

MATHEMATICAL SIMULATION OF FLOW FIELD OF PHOTOSYNTHETIC BACTERIA HYDROGEN PRODUCTION REACTOR
下载PDF
导出
摘要 采用CFD技术对超微秸秆光合产氢反应器进行数值模拟和流场分析;基于混合模型得出超微秸秆光合产氢体系速度由较集中的主流区向周围不断发展,逐步达到速度的均匀分布,并且反应器底部存在明显的推流运动,使得沉淀的固体颗粒向前运动,大部分集聚在上流室,液相的冲击力使得上流室内固相分布高度和浓度都明显大于下流室;反应器中大部分区域都存在涡流,底部区域的涡流强度最大,这保障了光合细菌和超微秸秆颗粒的充分混合、接触,强化了传质,起到很好的自动搅拌作用,对进一步研究秸秆光合产氢反应器的工业化应用和运行控制有一定的参考。 The CFD technology was applied to mathematics simulate and flow field analuze of photosynthetic hydro-gen production reactor from ultramicro straw. Based on mixture model, information about flow field was obtained in detail. The flow velocity of photosynthetic hydrogen production reactor evolved from the mainstream to the surround-ing area, and gradually achieved uniform distribution. The bottom of reactor had obvious plug flow movement which made deposited solid particles move forward and assemble in the upflow chamber. The height and the concentrations of solid-phase distribution of upflow chamber were significantly higher than downflow chamber. Eddy current exist- ted in most areas of the reactor and the maximum eddy current was at the bottom of the reactor, which was condu- cive to mix photosynthetic bacteria and straw particles and enhanced mass transfer, and played a very good role in automatic stirring actim. The simulation results about velocity and concentration field will reference to industrializa-tion application and operation control of photosynthetic hydrogen production reactor.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2013年第4期723-728,共6页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(50976029) 国家高技术研究发展(863)计划(2006AA05Z119) 教育部博士点基金项目(20060466001)
关键词 光合产氢 流场 数值模拟 photosynthetic hydrogen production flow field mathematical simulation
  • 相关文献

参考文献12

  • 1Medvinsky A B, Rusakov A V, Chakraborty A, et al. Mathematical modeling of the spatial distribution of the pollen produced by genetically modified crops [ J ]. Complex Systems Biophysics, 2009, 54(5) : 652-654.
  • 2Zubarev A Y, Ostroushko A A, Bublik I V, et al. Simulation of the rheological properties of liquid media containing solid anisometric particles [ J ]. Colloid Journal, 2007, 69 (6) : 726-734.
  • 3Bogdanov P V, Kukhtin V P, Lamzin E A, et al. Designing magnetic systems for advanced compact isochronous cyclotrons by means of mathematical simulation [ J ]. Technical Physics, 2010, 55(9) : 1357-1366.
  • 4李进良,李承曦,胡仁喜,等.FLUENT6.3流场分析[M].北京:化学工业出版社,2009.
  • 5屈强,马鲁铭,王红武,袁宏宇.折流式沉淀池流态模拟[J].中国给水排水,2005,21(4):58-61. 被引量:29
  • 6Hao Hu, Weiyong Ying, Dingye Fang. Mathematical modeling of multi-bed adiabatic reactor for the Methanol-to-Olefin process[ J]. Reaction Kinetics Mechanisms and Catalysis, 2010, 101 ( 1 ) : 49-61.
  • 7赵春波,杨德武,张昌林.管式离心机固液两相流场的数值模拟[J].过滤与分离,2007,17(1):22-25. 被引量:6
  • 8Derevich I V. Statistical modeling of mass transfer in turbulent two-phase dispersed flows- I : Model development [ J]. International Journal of Heat and Mass Transfer, 2000, 43(19) : 3709-3723.
  • 9张冰,任南琪,周雪飞.生物制氢反应器流场的数值模拟[J].太阳能学报,2008,29(12):1558-1562. 被引量:5
  • 10宋文吉,肖睿,冯自平,黄冲,黎涛,董凯军.潜热输送介质颗粒沉降速度的固-液两相流模拟[J].工程热物理学报,2010,31(10):1693-1696. 被引量:5

二级参考文献24

  • 1周国忠,施力田,王英琛.搅拌反应器内计算流体力学模拟技术进展[J].化学工程,2004,32(3):28-32. 被引量:41
  • 2岳湘安,郝江平,陈家琅.固体颗粒在宾汉流体中的阻力系数与沉降速度[J].石油钻采工艺,1993,15(1):1-8. 被引量:6
  • 3欧益宏,杜扬,周明来,土明林.柱型水力旋流器多相流场及分离过程的数值模拟[J].流体机械,2005,33(1):28-31. 被引量:16
  • 4Bo Jin, Paul Lant. Flow regime, hydrodynamics, floc size distribution and sludge properties in activated sludge bubble column, air-lift and aerated stirred reactors[ J]. Chemical Engineering Science, 2.004, (59) : 2379---2388.
  • 5任南琪,王宝贞.有机废水发酵法生物制氢技术[M].哈尔滨:黑龙江科学技术出版社,1994,77-100.
  • 6Dakshinamoorthy D, Khopkar A R, Louvar J F, et al. CFD simulations to study shortstopping runaway reactions in a stirred vessel [ J ]. Journal of Loss Prevention in the Process Industries, 2004, (17) : 355--364.
  • 7Fujibara akiya. Chemical Story and Chemical Heat-Pump [M]. Chemical Industry Information, 1983, 18(1): 13-27.
  • 8Niezgoda-Zelasko, B W Z. Momentum Transfer of Ice Slurry Flows Intubes, Modelling [J]. International Journal of Refrigeration, 2006, 29:429-436.
  • 9Inaba H. New Challenge in Advanced Thermal Energy Transportation Using Functionally Thermal Fluids [J]. International Journal of Thermal Science, 2000, 39: 991- 1003.
  • 10Takao S, Ogoshi H, Matsumoto S. Air Conditioning and Thermal Storage Systems Using Clathrate Hydrate Slurry. U. S. Patent, US0083720 A1 [P]. 2002.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部