摘要
A new approach is presented to reveal the temporal structure of femtosecond laser pulses by recording the correspond- ing time-resolved shadowgraphs of the laser-induced air plasma. It is shown that the temporal structures of femtosecond laser pulses, normally not observable by the ordinary intensity autocorrelator, can be detected through intuitively analyz- ing the ultrafast evolution process of the air plasma induced by the femtosecond laser pulses under examination. With this method, existence of pre- and post-pulses has been clearly unveiled within the time window of 4-150 fs in reference with the main 50-fs laser pulses output from a commercial 1-kHz femtosecond laser amplifier. The unique advantage of the proposed method is that it can directly provide valuable information about the pulse temporal structures' effect on the laser-induced ionization or material ablation.
A new approach is presented to reveal the temporal structure of femtosecond laser pulses by recording the correspond- ing time-resolved shadowgraphs of the laser-induced air plasma. It is shown that the temporal structures of femtosecond laser pulses, normally not observable by the ordinary intensity autocorrelator, can be detected through intuitively analyz- ing the ultrafast evolution process of the air plasma induced by the femtosecond laser pulses under examination. With this method, existence of pre- and post-pulses has been clearly unveiled within the time window of 4-150 fs in reference with the main 50-fs laser pulses output from a commercial 1-kHz femtosecond laser amplifier. The unique advantage of the proposed method is that it can directly provide valuable information about the pulse temporal structures' effect on the laser-induced ionization or material ablation.
基金
Project supported by the National Natural Science Foundation of China (Grant Nos. 11004111 and 61137001)
the Natural Science Foundation of Tianjin City,China (Grant No. 10JCZDGX35100)
the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100031120034)
the Fundamental Research Funds for the Central Universities of China