期刊文献+

High sensitivity Hall devices with AlSb/InAs quantum well structures

High sensitivity Hall devices with AlSb/InAs quantum well structures
下载PDF
导出
摘要 A1Sb/InAs quantum well (QW) structures and InAs films on GaAs (001) substrates were grown by molecular beam epitaxy (MBE). We investigated the dependence of electron mobility and two-dimensional electron gas (2DEG) concen- tration on the thickness of an InAs Channel. It is found that electron mobility as high as 19050 cm2 · V-1 · s-1 has been achieved for an InAs channel of 22.5 nm. The Hall devices with high sensitivity and good temperature stability were fabricated based on the A1Sb/InAs QW structures. Their sensitivity is markedly superior to Hall devices of InAs films. A1Sb/InAs quantum well (QW) structures and InAs films on GaAs (001) substrates were grown by molecular beam epitaxy (MBE). We investigated the dependence of electron mobility and two-dimensional electron gas (2DEG) concen- tration on the thickness of an InAs Channel. It is found that electron mobility as high as 19050 cm2 · V-1 · s-1 has been achieved for an InAs channel of 22.5 nm. The Hall devices with high sensitivity and good temperature stability were fabricated based on the A1Sb/InAs QW structures. Their sensitivity is markedly superior to Hall devices of InAs films.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期453-455,共3页 中国物理B(英文版)
基金 Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. ISCAS2009T04) the National Natural Science Foundation of China (Grant Nos. 61204012 and 61274049) the Beijing Natural Science Foundation, China (Grant No. 2112040) the Beijing Nova Program, China (Grant No. 2010B056)
关键词 antimonide semiconductors quantum well molecular beam epitaxy antimonide semiconductors, quantum well, molecular beam epitaxy
  • 相关文献

参考文献11

  • 1Bennett B R, Magno R, Boos J B, Kruppa W and Ancona M G 2005 Solid-State Electron. 49 1875.
  • 2Ma B Y, Bergman J, Chen P, Hacker J B, Sullivan G, Nagy G and Brar B 2006 IEEE Trans. Microw. Theory Tech. 54 4448.
  • 3Li Y B, Zhang Y, Zhang Y W, Wang B Q, Zhu Z P and Zeng Y P 2012 Appl. Surf.. Sci. 258 6571.
  • 4Jiang Z W, Wang W X, Gao H C, Li H, He T, Yang C L, Chen H and Zhou J M 2009 Acta Phys. Sin. 58 471.
  • 5Wallart X, Lastennet J, Vignaud D and Mollot F 2005 Appl. Phys. Lett. 87 043504.
  • 6Blank H R, Thomas M, Wong K C and Kroemer H 1996 Appl. Phys. Lett. 69 2080.
  • 7Li Y B, Zhang Y and Zeng Y P 2010 J. Appl. Phys. 108 044504.
  • 8Tuttle G, Kroemer H and English J H 1990 J. Appl. Phys. 67 3032.
  • 9Desplanque L, Kazzi S E, Codron J L, Wang Y, Ruterana P, Moschetti G, Grahn J and Wallart X 2012 Appl. Phys. Lett. 100 262103.
  • 10Li Y B, Zhang Y and Zeng Y P 2011 J. Appl. Phys. 109 073703.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部