期刊文献+

米根霉菌落形态优化对乳酸积累的影响

Optimization of lactic acid production based on the fungal morphology by rhizopus oryzae
下载PDF
导出
摘要 本文研究了培养温度、前培养培养基组成包括葡萄糖浓度、大豆蛋白胨、无机离子等对米根霉菌丝形态及菌体直径的影响。其中,无机离子抑制菌丝形成颗粒状,而大豆蛋白胨促进菌丝形成颗粒状;前培养基中初始葡萄糖、大豆蛋白胨浓度直接影响颗粒直径和菌体干重,在一定范围内,颗粒直径随底物浓度升高而降低,超过此范围,颗粒直径随底物浓度升高而升高;菌体干重随底物浓度变化的趋势与此相反。因此,前培养过程中能到获得颗粒直径小、菌体干重大的情形。基于米根霉形态优化,摇瓶水平乳酸积累量达到78.89g/L,同比提高61.76%;发酵罐水平乳酸积累量达到56.87g/L,同比提高54.41%。 The effects of temperature, agitation rate and medium composition, including concentrations of glucose, soybean peptone, and inorganic ions, on pellet formation and pellet diameter of Rhizopus oryzae NRRL1526 during pre -culture were studied. Inorganic ions and soybean peptone had negative and positive effects on pellet formation, re- spectively. The initial glucose and soybean peptone concentrations directly affected pellet diameter. Within a certain range, pellet diameter decreased with the increase of initial substrate concentrations; however, above this range, there was an opposite trend. Thus, during pre - culture stage, small pellets with bigger dry mass of R. oryzae can be cu- litved. Furthermore, dry cell mass and yield of lactic acid increased with the decrease of pellet diameter. Based on the pellet morphology optimization, the final lactic acid concentration was improved by 46. 13% when fermented in a flask (54. 89 g/L) and 31.82% in stirred bioreactor tank fermentation (48.76 g/L).
作者 张婷
出处 《中国食品添加剂》 CAS 北大核心 2013年第2期138-143,共6页 China Food Additives
关键词 有机酸 乳酸 丝状真菌 米根霉 形态 organic acids lactic acid fungi rhizopus oryzae morphology
  • 相关文献

参考文献13

  • 1赵亮亮,汪军,周景文,刘立明,堵国成,陈坚.双层面调控Saccharomyces cerevisiae碳流促进L-乳酸积累[J].微生物学报,2011,51(1):50-58. 被引量:4
  • 2Soccol C, Marin B, Raimbauh M, Lebeauh JM. Potential of solid state fermentation for production of L ( + ) - lactic acid by Rhizopus oryzae [ J]. Appl Micmbiol Biotechnol, 1994, 41 ( 3 ) : 286 - 290.
  • 3Bai DM, Zhao XM, Li XG, Xu SM. Strain improvement of Rhizopus oryzae for over - production of 1 ( + ) - lactic acid and metabolic flux analysis of mutants [ J ]. Biochem Eng J, 2004, 18 (1): 41-48.
  • 4Zhou Z, Du G, Hua Z, Zhou J, Chen J. Optimization of fu- maric acid production by Rhizopus delemar based on the morphol- ogy formation [J]. Bioresouree Technol, 2011, 102 (21) : 9345 - 9349.
  • 5Morrin M, Ward OP. Relationships between fungal growth, morphology and fumaric acid production by Rhizopus arrhizus [J]. Mycol Res, 1990, 94 (4): 505-510.
  • 6Bai DM, Jia MZ, Zhao XM, Ban R, Shen F, Li XG, Xu SM. L ( + ) - lactic acid production by pellet - form Rhizopus oryzae R1021 in a stirred tank fermentor [J]. Chem Eng Sci, 2003, 58 (3): 785-791.
  • 7Papagianni M, Mattey M, Kristiansen B. The influence of glu- cose concentration on citric acid production and morphology of As- pergillus niger in batch and culture [ J ]. Enzyme Micreb Techn- ol, 1999, 25 (8): 710-717.
  • 8Haq IU, Ali S, Qadeer M, Iqbal J. Effect of copper ions on mould morphology and citric acid productivity by Aspergillus niger using molasses based media [ J ]. Process Biochem, 2002, 37 (10) : 1085 -1090.
  • 9Trinci A, Morris N. Morphology and growth of a temperature - sensitive mutant of Aspergillus nidulans which forms aseptate my- celia at non - permissive temperatures [ J ]. J Gen Microbiol, 1979, 114 (1): 53-59.
  • 10Higashiyama K, Murakami K, Tsujimura H, Matsumoto N, Fujikawa S. Effects of dissolved oxygen on the morphology of an arachidanic acid production by Mortierella alpina 1S - 4 [ J ]. Biotechnol Bioeng, 2000, 63 (4): 442-448.

二级参考文献23

  • 1林建平,周凡,岑沛霖.三相流化床L-乳酸发酵及与离子交换分离耦合[J].微生物学报,1996,36(4):310-313. 被引量:23
  • 2Dequin S, Barre P. Mixed Lactic Acid CAlcoholic Fermentation by Saccharomyes cerevisiae Expressing the Lactobacillus casei L ( + ) CLDH. Nature Biotechnoogyl, 1994,12 ( 2 ) : 173-177.
  • 3Hester A. IB market forecast. Industrial. Bioprocessing, 2000,22 : 4-5.
  • 4Skory CD. Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene. Journal of Industrial Microbiology Biotechnology, 2003,30 ( 1 ) : 22-27.
  • 5Porro D, Brambilla L, Ranzi L. Development of B, Martegani E, Alberghina metabolically engineered Saccharomyces cerevisiae cells for the production of lactic acid. Biotechnoogyl Progress, 1995,11 ( 3 ) :294-298.
  • 6Adachi E,Torigoe M, Sugiyama M, Nikawa J, Shimizu K. Modification of metabolic pathways of Saccharomyces cerevisiae by the expression of lactate dehydrogenase and deletion of pyruvate decarboxylase genes for the lactic acid fermentation at low pH value. Journal of Fermentation and Bioengineering, 1998,86 ( 3 ) : 284-289.
  • 7Ishida N, Saitoh S, Tokuhiro K, Nagamori E, Matsuyama T, Kitamoto K, Takahashi H. Efficient production of L- lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene. Applied and Environmental Microbiology, 2005,71 ( 4 ) : 1964-1970.
  • 8Ishida N, Saitoh S, Onishi T, Tokuhiro K, Nagamori E, Kitamoto K, Takahashi H. The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on L-lactic acid production. Bioscience Biotechnology and Biochemistry, 2006,70 ( 5 ) : 1148-1153.
  • 9Vemuri GN, Eiteman MA, McEwen JE, Olsson L, Nielsen J. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proceeding of the National Academy of Science of United States of America, 2007,104 ( 7 ) :2402-2407.
  • 10Bianchi M, Brambilla L, Protani F, Liu C, Lievense J, Porro D. Efficient homolactic fermentation by Kluyveromyces lactis strains defective in pyruvate utilization and transformed with the heterologous LDH gene. Applied and Environmental Microbiology, 2001,67 ( 12 ) :5621-5625.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部