摘要
扩展卡尔曼滤波(EKF:Extended Kalman Filter)精度低,而且需要计算复杂的雅可比(Jacobian)矩阵;而中心差分卡尔曼滤波(CDKF:Central Difference Kalman Filter)虽然精度稍高,但计算量大,且算法不稳定。为此,提出了迭代测量更新的平方根中心差分卡尔曼滤波(ISR-CDKF:Iterative Square Root Central DifferenceKalman Filter)算法,并应用于SINS大方位初始对准中。通过滤波仿真表明,ISR-CDKF算法不仅具有更高的精度和收敛性,同时具有较强的数值稳定性。
The precision of EKF (Extended Kalman Filter) is low, which needs to calculate the complex Jacobian matrices. Although the theoretical precision of CDKF (Central Difference Kalman Filter) is a little higher, the amount of calculation is large and the algorithm is unstable. To overcome the above shortcomings, the ISR-CDKF (Iterative Square Root Central Difference Kalman Filter) is proposed, and is utilized in initial alignment. The results of simulation show that the ISR-CDKF has higher precision and convergence, and has stronger numerical stability.
出处
《吉林大学学报(信息科学版)》
CAS
2013年第2期196-202,共7页
Journal of Jilin University(Information Science Edition)
基金
国家自然科学基金资助项目(30972424)
教育部新世纪优秀人才支持计划基金资助项目(NCET-10-0279)
关键词
大方位失准角
捷联惯导
初始对准
ISR-CDKF算法
large azimuth misalignment
strapdown inertial navigation system
initial alignment
iterative square root central difference kalman filter (ISR-CDKF)