期刊文献+

LMBP和RBF在ECS特性曲线拟合中对比研究 被引量:4

Comparative Study on Application of LMBP and RBF Neural Networks in ECS Characteristic Curve Fitting
下载PDF
导出
摘要 为精确反映数字式涡流传感器的输入输出特性,为其非线性补偿提供可靠依据,对传统BP(BackPropagation)神经网络进行改进,利用LMBP(Levenberg-Marquart Back Propagation)神经网络和RBF(Radial BasisFunction)神经网络对涡流传感器的输入输出特性曲线进行拟合,并将两者拟合结果进行对比研究。仿真结果表明,在训练样本数量相等且中小规模网络的条件下,采用RBF神经网络比采用LMBP神经网络进行曲线拟合的误差更小、收敛速度更快且具有更高的拟合精度,为工程实际中一维数据的拟合方法选择提供了依据。 In order to accurately reflect the digital input and output characteristics of eddy current sensors and to improve traditional BP neural networks, LMBP (Levenberg Marquart Back Propagation) neural networks and RBF (Radial Basis Function) neural networks are first constructed. Then the two types of neural networks are applied respectively to the characteristic curve fitting of ECS (Eddy Current Sensors). Finally a comparison is made to compare the fitting results of the two networks. The simulation results show that with the same number of training samples, the networks are small or medium sized, compared with LMBP, RBF neural networks are superior in fitting error, convergence speed and fitting precision. And this provides a basis for the choice of fitting method of one-dimensional data in practical engineering
机构地区 渤海大学工学院
出处 《吉林大学学报(信息科学版)》 CAS 2013年第2期203-209,共7页 Journal of Jilin University(Information Science Edition)
基金 国家自然科学基金资助项目(61104071)
关键词 LMBP神经网络 RBF神经网络 涡流传感器 曲线拟合 levenberg-marquart back propagation (LMBP) neural network radial basis function (RBF) neural network eddy current sensor curve fitting
  • 相关文献

参考文献11

二级参考文献75

共引文献126

同被引文献33

  • 1黄建明.贝叶斯网络在学生成绩预测中的应用[J].计算机科学,2012,39(S3):280-282. 被引量:30
  • 2智会强,牛坤,田亮,杨增军.BP网络和RBF网络在函数逼近领域内的比较研究[J].科技通报,2005,21(2):193-197. 被引量:39
  • 3汤皓,陈国兴.基于灰关联与人工神经网络综合评价模型的多层砖房震害预测[J].世界地震工程,2006,22(4):133-139. 被引量:7
  • 4刘永,张立毅.BP和RBF神经网络的实现及其性能比较[J].电子测量技术,2007,30(4):77-80. 被引量:56
  • 5Ding Shuo, Wu Qing-hui. A MATLAB-based study on ap- proximation performances of improved algorithms of typical BP neural networks [ J ]. Applied Mechanics and Materials, 2013,313-314 : 1353-1356.
  • 6Ding Shuo, Chang Xiao-heng. A MATLAB-hased study on the realization and approximation performance of RBF neu- ral networks[J]. Applied Mechanics and Materials, 2013, 325-326 : 1746-1749.
  • 7Ding Shuo, Chang Xiao-heng, Wu Qing-hui. Approxima- tion performance of BP neural networks improved by heuris- tic approach[ J]. Applied Mechanics and Materials, 2013, 411-414 : 1952-1955.
  • 8王斌.面向风电机组齿轮箱的故障诊断系统研究[D].保定:华北电力大学,2012.
  • 9Ding Shuo, Chang Xiao-heng, Wu Qing-hui. Fault diagnosis of induction motors based on RBF neural network[J]. Applied Mechanics and Materials, 2014,462-463:85-88.
  • 10Ding Shuo, Chang Xiao-heng. A Matlab-based study on the realization and approximation performance of RBF neural networks[J]. Applied Mechanics and Materials, 2013,325-326:1746-1749.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部