期刊文献+

数学教育中的隐喻研究 被引量:26

Tentative Approach to the Study on Mathematics Education through Metaphor
下载PDF
导出
摘要 具身认知理论是隐喻至关重要的认知心理学理论基础.隐喻从一个独特的经验论和系统论相结合的视角揭示了数学的本质和内在规律性,但同时也不可避免地遭遇了一些质疑或否定.隐喻的数学教育观应当可以认为属于社会建构主义的数学教育观,它提醒人们要在数学知识的生产和社会建构的过程中理解数学教育.隐喻恰好可以是社会性客观知识与个体主观知识之间联结的纽带.以隐喻为中介的数学教育可以为客观知识和主观知识之间、主观知识与主观知识之间提供互动和交流的舞台. Embodied Cognition theory is the essential psychology theoretical foundation of metaphor. Metaphor reveals both the nature of mathematics and its inherent regularity from a unique combination perspective of empiricism and system theory, and it inevitably encounters some suspicious and criticism. Its philosophy of mathematics education should be attributes to social constructivism, which reminds us to understand the mathematics education in a procedural view of mathematical knowledge production and construction. Metaphor exactly could unify objective and subjective, social and individual knowledge, and also, provide stage for the interaction and communication between them.
作者 谢圣英 喻平
出处 《数学教育学报》 北大核心 2013年第2期5-10,共6页 Journal of Mathematics Education
基金 2012年度教育部人文社会科学研究一般项目——中小学教师认识信念取向及其对教学行为的影响研究(12YJA880153) 2012年度江苏省普通高校研究生科研创新计划项目——中小学数学教师认识信念取向对教学监控的影响研究(CXZZ12-0343)
关键词 隐喻 具身认知 数学观 数学教育观 embodied cognition metaphor philosophy of mathematics philosophy of mathematics education
  • 相关文献

参考文献36

  • 1Pimm D. Metaphor and Analogy in Mathematics [J]. For the Learning of Mathematics, 1981, 1 (3): 47-50.
  • 2Presmeg N C. Prototypes, Metaphors, Metonymies, and Imaginative Rationality in High School Mathematics [J]. Educational Studies in Mathematics, 1992, 23(6): 595-610.
  • 3Sfard A. Reification as the Birth of Metaphor [J]. For the Learning of Mathematics, 1994, 14(1): 44-54.
  • 4Sfard A. Steering (dis) Course between Metaphors and Rigor: Using focal Analysis to Investigate an Emergence of Mathematical Objects [J]. Journal for Research in Mathematics Education, 2000, 31(3): 296-327.
  • 5Nfifiez R, Edwards L, Matos J F. Embodied Cognition as Grounding for Situatedness and Context in Mathematics Education [J]. Educational Studies in Mathematics, 1999, 39(1-3): 45-65.
  • 6Lakoff G, N6fiez R. Where Mathematics Comes from [M]. New York, NY: Basic Books, 2000.
  • 7Nfifiez R. Mathematical Idea Analysis: What Embodied Cognitive Science Can Say about the Human Nature of Mathematics [A]? In: Nakaora T, Koyama M. Proceedings of PME 24 [C]. Hiroshima: Hiroshima University, 2000.
  • 8Bazzani L. From Grounding Metaphors to Technological Devices: a Call for Legitimacy in School Mathematics [J]. Educational Studies in Mathematics, 2001, 47(3): 259-271.
  • 9Robutti O. Motion, Technology, Gesture in Interpreting Graphs [J]. International Journal of Computer Algebra in Mathematics Education, 2006, (13): 117-126.
  • 10Edwards L. Gestures and Conceptual Integration in Mathematical Talk [J]. Educational Studies in Mathematics, 2009, 70(2): 127-141.

二级参考文献70

  • 1李恒威,盛晓明.认知的具身化[J].科学学研究,2006,24(2):184-190. 被引量:241
  • 2燕学敏.晚清数学翻译的特点——以李善兰、华蘅芳译书为例[J].内蒙古大学学报(自然科学版),2006,37(3):356-360. 被引量:8
  • 3费多益.认知研究的现象学趋向[J].哲学动态,2007(6):55-62. 被引量:24
  • 4杜石然."九章算术"中关于"方程"解法的成就[J].数学通报,1956,(11):11-14.
  • 5Anderson, M. (2003). Embodied cognition: A field guide. Artificial Intelligence, 149, 91-130.
  • 6Bickhard, M. (2008). Is Embodiment necessary? In P. Calvo & T. Gomila (Eds.), Handbook of cognitive science: An embodied approach (pp.29-58). San Diego: Elsevier Ltd.
  • 7Calvo, P., & Gomila, T (2008). Handbook of cognitive science: An embodied approach (Eds.). San Diego: Elsevier Ltd.
  • 8Fusar-Poli, P. & Stanghellini, G. (2009). Maurice Merleau- Ponty and the "embodied subjectivity" (1908-61). Medical Anthropology Quarterly, 23(2), 91-93.
  • 9Gallese, V., & Lakoff, G. (2005). The brain's concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22(3/4), 455-479.
  • 10Gibbs, R. (2006). Embodiment and cognitive science. Cambridge: Cambridge University Press.

共引文献865

同被引文献190

引证文献26

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部