摘要
具身认知理论是隐喻至关重要的认知心理学理论基础.隐喻从一个独特的经验论和系统论相结合的视角揭示了数学的本质和内在规律性,但同时也不可避免地遭遇了一些质疑或否定.隐喻的数学教育观应当可以认为属于社会建构主义的数学教育观,它提醒人们要在数学知识的生产和社会建构的过程中理解数学教育.隐喻恰好可以是社会性客观知识与个体主观知识之间联结的纽带.以隐喻为中介的数学教育可以为客观知识和主观知识之间、主观知识与主观知识之间提供互动和交流的舞台.
Embodied Cognition theory is the essential psychology theoretical foundation of metaphor. Metaphor reveals both the nature of mathematics and its inherent regularity from a unique combination perspective of empiricism and system theory, and it inevitably encounters some suspicious and criticism. Its philosophy of mathematics education should be attributes to social constructivism, which reminds us to understand the mathematics education in a procedural view of mathematical knowledge production and construction. Metaphor exactly could unify objective and subjective, social and individual knowledge, and also, provide stage for the interaction and communication between them.
出处
《数学教育学报》
北大核心
2013年第2期5-10,共6页
Journal of Mathematics Education
基金
2012年度教育部人文社会科学研究一般项目——中小学教师认识信念取向及其对教学行为的影响研究(12YJA880153)
2012年度江苏省普通高校研究生科研创新计划项目——中小学数学教师认识信念取向对教学监控的影响研究(CXZZ12-0343)
关键词
隐喻
具身认知
数学观
数学教育观
embodied cognition
metaphor
philosophy of mathematics
philosophy of mathematics education