期刊文献+

活性滤料滤池气提系统影响因素研究 被引量:1

Influence factors in air-lift sand filter (ALF) system with bacteria activity
原文传递
导出
摘要 为了研究气量、水深和提砂管规格对活性滤料滤池提砂系统性能的影响,本实验以石英砂作为活性滤料滤池的提升介质,在恒定水头状态下,测量了不同管径下被提升的水和砂的体积和质量随压缩空气流量的变化.结果表明:随着气量的增大,提升系统的提砂量和提砂效率均呈先增大后减小的趋势;提砂管管径是最大提砂量的限制因素,但提升的砂水体积比与管径无关;相同气量条件下,单位空气提砂量与水深呈线性关系.因此,在活性滤料滤池提砂系统的设计应用过程中应选择合适的提砂管径,尽量增加浸水率,并注意控制气量以提升系统能效. The performance of the air-lift filtration system in Nordic Water fibers is particularly affected by air flow rate, water head and the size of sand- lifting tube. This paper tests the impacts of air flow rate and diameter of tube on the volume of the lifted water and sand at fixed water head in an air-lift sand filter (ALF). It is shown that the amount of lifted sand and lifting efficiency both have an increasing-then-decreasing trend with the increasing air flow. The diameter of sand-lifting tube mainly determines the maximum amount of lifted sand and the lifting efficiency, which has no effect on the ratio of lifted water to sand. There is also a linear relationship between water head and the amount of sand lifted per unit air flow volume under the condition of constant air flow. As a consequence, the diameter of the sand tube and air flow rate are suggested to be well designed in order to maximize the efficiency of the air-lift sand filter (ALF) system.
出处 《环境科学学报》 CAS CSCD 北大核心 2013年第5期1239-1243,共5页 Acta Scientiae Circumstantiae
基金 国家高技术研究发展计划(863)项目(No.2009AA063805)~~
关键词 气体提升系统 气量 管径 水深 air-lift system air flow pipe diameter water depth
  • 相关文献

参考文献14

  • 1Cho N C, Hwang I J, Lee C M, et al. 2009. An experime-tal study on the airlift pump with air jet nozzle and booster pump[ J]. Journal of Environment Scienees, 21 ( 1 ) : 19-23.
  • 2Fujimoto H, Ogawa S, Takuda H, et al. 2003. Operation performance of a small air-lift pump for conveying solid particles [ J ]. Journal of Energy Resources Technology, 125 ( 1 ) : 17-25.
  • 3Furukawa T, Fukano T. 2001. Effects of liquid viscosity on flow patterns in vertical upward gas-liquid two-phase flow [ J ]. International Journal of Multiphase Flow, 27(6) : 1109-1126.
  • 4Hanafizadeh P, Ghanbarzadeh S, Saidi M H. 2011. Exergy analysis of airlift systems : experimental approach [ J ]. International Journal of Exergy, 8(4) : 407-424.
  • 5Kassab S Z, Kandil H A, Warda H A, et al. 2007. Experimental and analytical investigations of airlift pumps operating in three-phase flow [J]. Chemical Engineering Journal, 131 (1/3) : 273-281.
  • 6Kassab S Z, Kandil H A, Warda H A, et al. 2009. Air-lift pumps characteristics under two-phase flow conditions [ J ]. International Journal of Heat and Fluid Flow, 30 ( 1 ) : 88-98.
  • 7Khalil M F, Elshorbagy K A, Kassab S Z, et al. 1999. Effect of air injection method on the performance of an air lift pump [ J ]. International Journal of Heat and Fluid Flow, 20(6) : 598-604.
  • 8Kramer,J.P.,Wouters,J.W.,Rosmalen,Pvan.帕克活性生物砂滤脱氮的四年运行经验[J].水工业市场,2009(3):63-66. 被引量:3
  • 9李俊生.活性砂过滤器在城镇污水厂节能减排中的应用[J].中国给水排水,2010,26(1):57-59. 被引量:26
  • 10梅从明,魏思宇,刘锋.活性砂滤池在污水处理厂提标改造中的应用[J].环境科技,2009,22(4):44-47. 被引量:23

二级参考文献14

共引文献38

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部