期刊文献+

西湖底泥中的反硝化型甲烷厌氧氧化菌的分子生物学检测 被引量:18

Molecular detection of denitrifying anaerobic methane oxidizing bacteria in the sediment of West Lake, Hangzhou
原文传递
导出
摘要 反硝化型甲烷厌氧氧化反应(Denitrifying anaerobic methane oxidation,DAMO)是一种最新发现的生物反应,该反应能够偶联反硝化和甲烷的厌氧氧化.催化DAMO反应的微生物是NC10门中一种被命名为"Candidatus Methylomirabilis oxyfera"的细菌.本研究采用基因克隆文库技术考察了西湖淡水底泥中DAMO微生物的分布与种群多样性状况.16S rRNA基因系统发育分析表明,西湖底泥中存在NC10门细菌,与已知的M.oxyfera的16S rRNA基因相似度为93%~98%.DAMO微生物功能基因(pmoA)的系统发育分析进一步证实了西湖底泥中分布有此类微生物,与已知的M.oxyfera的pmoA基因相似度为86%~95%.实时定量PCR结果表明,西湖底泥中DAMO微生物的16S rRNA基因的拷贝数为2.15×105 copies·g-1(以干重计). Denitrifying anaerobic methane oxidation (DAMO), a coupling process between methane oxidation and denitrification, is discovered recently. This process is mediated by "Candidatus Methylomirabilis oxyfera", which belongs to the candidate phylum NC10. This study investigated the distribution and diversity of the DAMO bacteria in the sediment of West Lake, Hangzhou. Both the 16S rRNA and the pmoA molecular biomarkers confirmed the presence of diverse NC10 phylum bacteria related to M. oxyfera in this freshwater ecosystem. Phylogenetic analysis showed that the recovered 16S rRNA gene sequences had 93%~98% identity to the 16S rRNA gene of M. oxyfera. The detected pmoA sequences had 86%~95% identity to the pmoA gene of M.oxyfera. Real-time quantitative PCR further confirmed the presence of the DAMO bacteria in the examined sediments with 2.15×10^5 copies·g^-1 (dry weight).
出处 《环境科学学报》 CAS CSCD 北大核心 2013年第5期1321-1325,共5页 Acta Scientiae Circumstantiae
基金 国家"十二五"科技支撑计划(No.2012BAJ25B07) 国家自然科学基金(No.51108408)~~
关键词 反硝化型甲烷厌氧氧化菌 西湖底泥 分布 种群多样性 denitrifying anaerobic methane oxidizing bacteria West Lake sediment distribution microbial diversity
  • 相关文献

参考文献14

  • 1Cicerone R J, Oremland R S. 1998. Biogeochemieal aspects of atmospheric methane [J]. Glob Biogeochem Cy, 2(4) : 299-327.
  • 2Deutzmann J S, Sehink B. 2011. Anaerobic oxidation of methane in sediments of Lake Constance, an ollgotrophie freshwater lake [J]. Appl Environ Microbiol, 77( 13 ) : 4429-4436.
  • 3Ettwig K F, van Alen T, van de Pas-Schoonen K T, et al. 2009. Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum [J]. Appl Environ Microbiol, 75 (11) : 3656-3662.
  • 4Ettwig K F, Butler M K, Le Paslier D, et al. 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria [ J ]. Nature, 464 (7288) : 543-548.
  • 5Juretschko S, Timmermann G, Schmid M C, et al. 1998. Combined molecular and conventional analyses alanalyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and nitrospira-like bacteria as dominant populations [ J ]. Appl Environ Microbiol, 64(8) : 3042-3051.
  • 6Hinrichs K U, Hayes J M, Sylva S P, et al. 1999. Methane-consuming archaebacteria in marine sediments [ J ]. Nature, 398 ( 6730 ) : 802-805.
  • 7Kojima H, Tsutsumi M, Ishikawa K, etal. 2012. Distribution of putative denitrifying methane oxidizing bacteria in sediment of a freshwater lake, Lake Biwa [J]. Syst Appl Microbiol, 35(4) :233- 238.
  • 8Luesken F A, van Alen T A, van der Biezen E, et al. 2011a. Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge [ J]. Appl Microbiol Biotechnol, 92 (4) : 845-854.
  • 9Luesken F A, Zhu B, Alen T, et al. 201lb. pmoA primers for detection of anaerobic methanotrophs [ J]. Appl Environ Microbiol, 77 ( 11 ) : 3877-3880.
  • 10Raghoebarsing A A, Pol A, van de Pas-Schoonen K T, et al. 2006. A microbial consortium couples anaerobic methane oxidation to denitrification [ J]. Nature, 440(7086) : 918-921.

二级参考文献83

  • 1Losekann T, Knittel K, Nadalig T, et al. Diversity and abun- dance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Envir Microbiol, 2007, 73(10) : 3 348-3 362.
  • 2Knittel K, Boetius A. Anaerobic oxidation of methane: Progress with an unknown process. Annu Rev Microbiol, 2009, 63: 311 -334.
  • 3Martinez R J, Mills H J, Story S, et al. Prokaryotic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico. Environ Microbiol, 2006, 8(10): 1 783-1 796.
  • 4Mills H J, Martinez R J, Story S, et al. Characterization of microbial community structure in Gulf of Mexico gas hydrates : comparative analysis of DNA- and RNA-derived clone libraries. Appl Environ Microbiol, 2005, 71 (6) : 3 225-3 247.
  • 5Lloyd K G, Lapham L, Teske A. An anaerobic methane-oxidizing community of ANME-lb archaea in hypersaline Gulf of Mexico sediments. Appl Environ Microbiol, 2006, 72 ( 11 ) : 7 215-7 230.
  • 6Michaelis W, Seifert R, Nauhaus K,et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science, 2002, 297(5583) : 1 013-1 015.
  • 7Knittel K, Boetius A, Lemke A, et al. Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia margin, Oregon). Geomicrobiol J, 2003, 20(4) : 269-294.
  • 8Reitner J, Peckmann J, Blumenberg M, et al. Concretionary methane seep carbonates and associated microbial communities in Black Sea sediments. Palaegeogr Paleoclimatol Paleoecol, 2005, 227(1/3) : 18-30.
  • 9Dekas A E, Poretsky R S, Orphan V J. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science, 2009, 326(5951 ): 422-426.
  • 10Nunoura T, Oida H, Miyazaki J, et al. Quantification of mcrA by fluorescent PCR in methanogenic and methanotrophic microbial communities. FEMS Microbiol Ecol, 2008, 64(2) : 240-247.

共引文献42

同被引文献273

引证文献18

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部