期刊文献+

一类满足FSAL技术的RKNd方法 被引量:1

A CLASS OF RKNd METHOD SATISFIED FSAL TECHNIQUE
原文传递
导出
摘要 陈丙振和游雄给出了内级阶比传统RK方法高一阶的RKNd方法.FSAL技术是一种常用的节省函数计算量的手段.其主要思想是,方法的更新与内级的最后一步相同,本文正是给出满足FSAL技术的RKNd方法.数值试验表明,本文的RKNdF方法比RKNd方法在计算效率上具有一定的优越性. Chen Bingzhen and You Xiong obtained RKNd methods whose internal stages one order higher than the traditional Runge-Kutta (RK) methods. FSAL technique is a commonly used method of saving function calculations. The main idea is its update is same as the last internal stage. This paper is mainly considered the RKNd methods satisfied FSAL technique. Numerical experiments accompanied show the superiority of RKNdF methods satisfied FSAL technique in efficiency to RKNd methods.
出处 《计算数学》 CSCD 北大核心 2013年第2期151-158,共8页 Mathematica Numerica Sinica
关键词 RKNd方法 FSAL技术 阶条件 效率 RKNd method FSAL technique order conditions efficiency
  • 引文网络
  • 相关文献

参考文献4

  • 1陈丙振,游雄.求解初值问题的RKNd方法[J].计算数学,2010,32(4):399-412. 被引量:4
  • 2Dooren R V. Stabilization of Cowell's classical finite difference method for numerical integration[J] Comput. Phys., 1974, 16: 186-192.
  • 3Goeken D, Johnson O. Runge-Kutta with higher order derivative approximations[J]. Appl. Numer Math., 2000, 34: 207-218.
  • 4Vyver H V. A Runge-Kutta-NystrSm pair for the numerical integration of perturbed oscillators[J] Comput. Phys. Commun., 2005, 167: 129-142.

二级参考文献8

  • 1Butcher J C.Numerical Methods for Ordinary Differential Equations,second edition[M].John Wiley and Sons,2008.
  • 2Butcher J C.On the attainable order of Runge-Kutta methods[J].Math.of Comp.,1965,19:408-417.
  • 3Butcher J C.The non-existence of ten stage eighth order explicit Runge-Kutta methods[J].BIT,1985 25:521-540.
  • 4Dooren R V.Stabilization of Cowell's classical finite difference method for numerical integration[J].Comput.Phys.,1974,16:186-192.
  • 5Goeken D,Johnson O.Runge-Kutta with higher order derivative approximations[J].Appl.Numer.Math.,2000,34:207-218.
  • 6Hairer E,N()rsett S P,Wanner G.Solving ordinary differential equations I,Nonstiff problems[M].Springer-Verlag,1993.
  • 7Houwen P J,Sommeijer B P.Explicit Runge-Kutta(-Nystr(o)m)methods with reduced phase error for computing oscillating solutions[J].SIAM J.Numer.Anal.,1987,24:595-617.
  • 8Vyver H V.A Runge-Kutta-Nystr(o)m pair for the numerical integration of perturbed oscillators[J].Comput.Phys.Commun.,2005,167:129-142.

共引文献3

同被引文献2

引证文献1

;
使用帮助 返回顶部