期刊文献+

用正交函数求超奇异积分的近似值及其误差估计

USING THE ORTHOGONAL FUNCTIONS TO SOLVE THE APPROXIMATE SOLUTIONS AND THE ERROR OF THE SUPERSINGULAR
原文传递
导出
摘要 基于Hadamard有限部分积分定义,当密度函数是多项式、正弦函数和余弦函数时,本文推导出了计算超奇异积分准确值的公式,进而利用这些公式给出了密度函数为一般连续函数的超奇异积分近似值的计算方法.本文还对近似值进行了误差分析,据此可以在事先给定的误差下来计算超奇异积分的近似值.最后将前面的理论应用到超奇异积分方程求近似解的问题.数值算例表明该方法的可行性和有效性. Based on the definition of Hadamard finite-part integral, we deduce the formula comput- ing the exact value of the supersingular integral when the density function is a polynomial, sine or cosine. Then we gain the calculation method solving the approximate value of the supersingular integral for a general density function. In this paper, we analyse the error so that we can compute the approximate value of supersingular integral in the limit of the error which has been given. Finally, the theory is applied to resolve the approximate solution of the supersingular integral equation. The feasibility and validity of the method can be proved by the examples shown in the work.
机构地区 燕山大学理学院
出处 《计算数学》 CSCD 北大核心 2013年第2期215-224,共10页 Mathematica Numerica Sinica
基金 河北省自然科学基金(A2012203047)资助项目 秦皇岛市科学技术研究与发展计划(201201B019)资助项目
关键词 超奇异积分 Hadamard有限积分 FOURIER级数 LEGENDRE多项式 最小二乘法 Supersingular integral Hadamard finite-part integral Fourier series Leg-endre polynomial Method of least squares
  • 相关文献

参考文献15

  • 1Babuska I, Yu D H. Asymptotically exact a-posteriori error estimator for biquadratic elements[J]. Finite Elements in Analysis and Design, 1987, 3: 341-354.
  • 2Feng K, Yu D H. Canonical integral equations of elliptic boundary value problems and their numerical solutions. Proceedings of China-France Symposium on the Finite Element Method, Science Press, Beijing, 1983, 211-252.
  • 3Monegato G. Numerical evaluation of hypersingular integrals[J]. J. Comput. Appl. Math., 1944, 50: 9-31.
  • 4Linz P. On the approximate computation of certain strongly singular integrals[J]. Computing, 1985, 35: 345-353.
  • 5Wu J M, Sun W. The superconvergence of the composite trapezoidal rule for Hadamard finite part integrals[J]. Numer. Math., 2005, 102: 343-363.
  • 6Zhang X P, Wu J M, Yu D H. The superconvergence of the composite Newton-Cotes rules for Hadamard finite-part integral on a circle[J]. Computing, 2009, 85: 219-244.
  • 7Li J, Wu J M, Yu D H. Generalized extrapolation for computation of hypersingular integrals in boundary element methods[J]. Comp. Model. Engng. Sci., 2009, 42: 151-175.
  • 8Wu J M, Sun W W. The superconvergence of Newton-Cotes rules for the Hadamard finite-part integral on an interval[J]. Numer. Math., 2008, 109: 143-165.
  • 9Elliott D, Venturino E. Sigmoidal transformations and the Euler-Maclaurin expansion for evalu- ating certain Hadamard finite-part integrals[J]. Numer. Math., 1997, 77: 453-465.
  • 10陈一鸣,仪明旭,魏金侠,陈娟.Legendre小波求解超奇异积分[J].计算数学,2012,34(2):195-202. 被引量:3

二级参考文献32

  • 1余德浩.圆周上超奇异积分计算及其误差估计[J].高等学校计算数学学报,1994,16(4):332-337. 被引量:6
  • 2Andrews L C. Special Functions of Mathematics for Engineers, second ed., McGraw-Hill, Inc, 1992.
  • 3Du Q K. Evaluations of certain hypersingular integrals on interval[J]. Int. J. Numer. Meth. Eng., 2001. 51: 1195-1210.
  • 4Elliott D, Venturino E. Sigmoidal transformations and the Euler-Maclaurin expansion for evaluating certain Hadamard finite-part integrals[J]. Numer. Math., 1997, 77: 453-465.
  • 5Hasegawa T. Uniform approximations to finite Hilbert transform and its derivative[J]. J. Comput. Appl. Math., 2004, 163: 127-138.
  • 6Hui C Y, Shia D. Evaluations of hypersingular integrals using Gaussian quadrature[J]. Int. J. Numer. Methods Eng., 1999, 44: 205-214.
  • 7Ioakimidis N I. On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals and their derivatives[J]. Math. Comp., 1985, 44: 191-198.
  • 8Linz P. On the approximate computation of certain strongly singular integrals[J]. Computing, 1985, 35: 345-353.
  • 9Monegato G. Numerical evaluation of hypersingular integrals[J]. J. Comput. Appl. Math., 1994, 50: 9-31,.
  • 10Wu J M, Sun W. The superconvergence of the composite trapezoidal rule for Hadamard finite part integrals[J]. Numer. Math., 2005, 102: 343-363.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部