期刊文献+

HotRank:热度敏感的非结构化数据检索排名算法 被引量:3

HotRank:heat-sensitive ranking algorithm for unstructured data search
下载PDF
导出
摘要 为满足用户对非结构化数据检索的需求,分析用户对数据的操作行为,提出一种新型的数据热度敏感的非结构化数据检索排名算法HotRank。通过对数据操作情况(任务、访问次数、编辑时长等)进行日志记录,形成非结构化数据检索数据集。在此基础上,定义数据的任务相似度和数据热度计算方法实现该算法。结合实例仿真,对算法进行评估,并将仿真结果与其他算法进行比较,证明了该排名算法的准确率优于其他算法。 To satisfy users' retrieval needs for unstructured data, by analyzing data operations of users,this paper proposed a novel heat-sensitive ranking algorithm for unstructured data search which was named HotRank. By logging the operators of da- ta, such as task, access time, edit time etc. ,it created unstructured dataset. After that,it calculated similarity between task at- tribute of data and recent task, so as data heat, then established HotRank. Finally, it used unstructured data search to verify this algorithm and the result Of simulation. Compared with the other well-known algorithms, the results indicate that this algo- rithm is better than several other algorithms in precision.
出处 《计算机应用研究》 CSCD 北大核心 2013年第5期1306-1308,共3页 Application Research of Computers
基金 国家科技支撑计划资助项目(2009BAH39B03) 国家自然科学基金资助项目(61072060) 国家"863"计划资助项目(2011AA100706) 高等学校博士学科点专项科研基金资助项目(20110005120007) 中央高校基本科研业务费专项资金资助项目(2012RC0205)
关键词 非结构化数据 检索 排名 热度 unstructured data search rank heat
  • 相关文献

参考文献11

  • 1KARGER D R,BAKSHI K, HUYNH D,et al. Haystack :a customizable general-purpose information management tool for end users of semi- structured data[ C ]//Proc of the 2nd Biennial Conference on Innovative Data System Research. 2005.
  • 2CUTRELL E, ROBBINS D, DUMAIS S, et al. Fast, flexible filtering with phlat[ C ]//Proc of Conference on Human Factors in Computing Systems. New York : ACM Press,2006:261- 270.
  • 3CHIRITA P P, NEJDL W. Analyzing user behavior to rank desktop items[ C]//Proc of the 13th International Conference on String Pro- cessing and information Retrieval. Berlin: Springer-Verlag, 2006 : 86- 97.
  • 4COHEN S, DOMSHLAK C, ZWERDLING N. On ranking techniques for desktop search [ J ]. ACM Trans on Information System, 2008, 26(2) :1-24.
  • 5CHEN Yi, KELLY L, JONES G J F. Memory support for desktop search[ C]//Prec of SIGIR Workshop on Desktop Search. 2010.
  • 6LI Yu-kun, ZHANG Xiang-yu, MENG Xiao-feng. Exploring desktop resources based on user activity analysis[ C]//Prec of the 33rd Inter- national Conference on Research and Development in Information Re- trieval. New York : $CM Press ,2010:700.
  • 7KIM J, CROFT W B. Retrieval experiments using pseudo-desktop col- lections[ C ]//Proc of the 18th Conference on Information and Know- ledge Management. New York :ACM Press, 2009 : 1297-1306.
  • 8KIM J, CROFT W B. Ranking using multiple document types in desk- top search [ C ]//Pree of the 33rd International Conference on Re- search and Development in Information Retrieval. New York: ACM Press,2010:50-57.
  • 9JEWSEN C, LOWSDALE H, WYNN E, et al. The life and times of files and information : a study of desktop provenance [ C ]//Proc of Conference on Human Factors in Computing Systems. New York :ACM Press ,2010:767-776.
  • 10韩晶,鄂海红,宋美娜,宋俊德.基于主体行为的非结构化数据模型[J].计算机工程与设计,2013,34(3):904-908. 被引量:12

二级参考文献10

  • 1Gantz J, Reinsel D. The digital universe decade, are you ready? [EB/OL]. [2010-06-08]. http: //www. mendeley, com/re- search/digital-universe-decade-ready-1/.
  • 2Doan A. Information extraction challenges in managing unstruc- tured data [J]. SIGMOD Record, 2008, 37 (4): 14-20.
  • 3CHU E, Baid A, CHEN T, et al. A relational approach to in- crementally extracting and querying structure in unstructured data [C]//PVLDB07. Vienna, 2007.
  • 4Doan A, Naughton J F, IMid A, et al. The case for a structured ap-proach to nmnaging unstructured data [C]//CIDR, Asilomar, 2009.
  • 5Srivastava D, Velegrakis Y. Intentional associateo- ns between data and metadata [C]. In: SIGMOD07. Beijing, 2007.
  • 6Minaek E, Paiu R, Costache S, et al. Leveraging personal metadata for desktop seareh: The Beagle+ + System[J].Journal of Web Semantics, 2010, 8 (1): 37-54.
  • 7Gary Anthes. Topic models vs unstructured data[J]. Commu- nications of the ACM, 2010, 53 (12): 16-18.
  • 8Croekford D. Introducing JSON [EB/OL]. [2012-05-24]. http://www, json. org/.
  • 9KS Beyer, Ercegova V, Gemulla C R, et al. Jaql: A scripting language for large scale semistructured data analysis [C] // Seattle, Washington: PVLDB, 2011.
  • 10LI Wei & LANG Bo State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China.A tetrahedral data model for unstructured data management[J].Science China(Information Sciences),2010,53(8):1497-1510. 被引量:13

共引文献11

同被引文献17

引证文献3

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部