期刊文献+

基于分类超平面的非线性集成学习机 被引量:2

Nonlinearly assembling learning machine based on separating hyperplane
下载PDF
导出
摘要 针对支持向量机面临的大规模数据分类问题,提出基于分类超平面的非线性集成学习机NALM。该方法借鉴管理学中协同管理的思想,将大规模数据分成规模较小的子集,然后分别在子集上运行分类超平面算法,最后将各子集上的分类结果进行非线性集成得到最终的分类结果。该方法不仅继承了分类超平面的优点,而且还将分类超平面的适用范围从小规模数据扩展到中大规模数据,从线性空间推广到Hilbert核空间。若干数据集上的实验表明:NALM能以较少的支持向量来解决大规模样本分类问题。 Inspired by collaborative management, this paper proposed nonlinearly assembling learning machine based on sepa- rating hyperplane (NALM) to solve the problems of large-scale datasets classification in support vector machine (SVM). In NALM, the original datasets were firstly divided into several subsets. After running the separating hyperplane (SH) algorithm on each subset, the final classification results were obtained by nonlinearly assembling each result from each subset. NALM extended the usage of SH from small scale datasets to medium and large scale datasets and from linear space to Hilbert kernel soace. Experiments on several datasets verify the effectiveness of NALM.
出处 《计算机应用研究》 CSCD 北大核心 2013年第5期1361-1364,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61202311) 山西省自然科学基金资助项目(2012011011-3)
关键词 支持向量机 分类超平面 非线性集成 大规模数据 support vector machine (SVM) separating hyperplane (SH) nonlinearly assembling large-scale datasets
  • 相关文献

参考文献12

  • 1武征鹏,张学工.Feature Rescaling of Support Vector Machines[J].Tsinghua Science and Technology,2011,16(4):414-421. 被引量:3
  • 2DAVENPORT M A, BARANIUK R G, scorT C D. Tuning support vector machines for minimax and Neyman-Pearson classification [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2010,32 (10) : 1888-1898.
  • 3PAL M, FOODY G M. Feature selection for classification of hyper spectral data by SVM [J]. IEEE Trans on Geoscience and Re- mote SenSing, 2010,48(5) : 229?-2307.
  • 4王骏,王士同,邓赵红.聚类分析研究中的若干问题[J].控制与决策,2012,27(3):321-328. 被引量:194
  • 5TSANG I W, KOCSOR A, KWOK J T. Large-scale maximum margin discriminant analysis using core vector machines [ J]. IEEE Trans on Neural Networks, 2008,t9(4) : 610-624.
  • 6DENG Zhao-hong, CHUNG Fu-lai, WANG Shi-tong. FRSDE: fast reduced set density estimator using minimal enclosing ball approxima- tion[ J]. Patternon Recognition, 2008,41 (4) :1363-1372.
  • 7DENG Zhao-hong CHOI K S, CHUNG Fu-lai, et al. Scalable TSK fuzzy modeling for very large datasets using minimal enclosing ball ap- proximation[J]. IEEE Trans Fuzzy Systems, 2011,19(2) : 210- 226.
  • 8HUANG Guang-bin, ZHU Qin-yu, SlEW C K. Extreme learning ma- chine : theory and applications [ J ]. Neurocomputing, 2006,70 ( 1- 3) : 489-501.
  • 9HUANG Guang-bin, CHEN Lei, SIEW C K. Universal approximation using incremental constructive feedforward networks with random hid- den nodes[J]. IEEE Trans on Neural Networks, 2006,17(4) : 879- 892.
  • 10MARCIN O. New separating hyperplane method with application to the optimization of direct marketing campaigns[J]. Pattern Recog- nition Letters, 2011,32 ( 3 ) :540- 545.

二级参考文献87

  • 1邓赵红,王士同.鲁棒性的模糊聚类神经网络[J].软件学报,2005,16(8):1415-1422. 被引量:11
  • 2李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 3王丽娟,关守义,王晓龙,王熙照.基于属性权重的Fuzzy C Mean算法[J].计算机学报,2006,29(10):1797-1803. 被引量:45
  • 4Ben-Hur A, Ong C, Sonnenburg S, et al. Support vector machines and kernels for computational biology. PLoS Computational Biology, 2008, 4(10): e 1000173.
  • 5Noble W S. What is a support vector machine? Nat. Biotechnol., 2006, 24:1565-1567.
  • 6Yang Z R. Biological applications of support vector machines. Brief Bioinform., 2004, 5(4): 328-338.
  • 7Bennett K P, Bredensteiner E J. Geometry in learning. Geometry at Work: A Collection of Papers Showing Applications of Geometry, 2000, 53: 132-145.
  • 8Chapelle O, Vapnik V, Bousquet O, et al. Choosing multiple parameters for support vector machines. Machine Learning, 2002, 46:131-159.
  • 9Schrlkopf B, Smola A J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. USA: MIT Press, 2002.
  • 10Ali S, Smith-Miles K A. Improved support vector machine generalization using normalized input space. In: Proceedings of 19th Australia Joint Conference on Artificial Intelligence. Hobart, Australia, 2006: 362-371.

共引文献204

同被引文献38

  • 1闫友彪,陈元琰.机器学习的主要策略综述[J].计算机应用研究,2004,21(7):4-10. 被引量:56
  • 2罗可,林睦纲,郗东妹.数据挖掘中分类算法综述[J].计算机工程,2005,31(1):3-5. 被引量:63
  • 3刘新茹,李艳荣,程爱斌,夏静.血糖及血小板变化对危重症患者预后的影响[J].山东医药,2006,46(14):69-70. 被引量:5
  • 4Wang Yu,Xiang Yang,Yu Shunzheng.Internet traffic classification using machine learning:a token-based approach[C]//Proc of the 16th IEEE International Conference on Computational Science and Engineering.[S.l.]:IEEE Press,2013:285-289.
  • 5Wolpert D H.Stacked generalization[J].Neural Networks,1992,5(2):241-259.
  • 6Quinlan J R.Bagging,boosting,and C4.5[C]//Proc of the 13th National Conference on Artificial Intelligence.[S.l.]:AAAI,1996:725-730.
  • 7Breiman L.Bagging predictors[J].Machine Learning,1996,24(2):123-140.
  • 8Dietterich T G.Ensemble methods in machine learning[M]//Multiple Classifier Systems.Berlin:Springer,2000:1-15.
  • 9Guo Jingming,Lin Chenchi,Chang Chehao,et al.Face gender recognition with halftoning-based AdaBoost classifiers[C]//Proc of IEEE International Symposium on Circuits and Systems.[S.l.]:IEEE Press,2013:2497-2500.
  • 10Connolly J F,Granger E,Sabourin R.Dynamic multi-objective evolution of classifier ensembles for video face recognition[J].Applied Soft Computing,2013,13(6):3149-3166.

引证文献2

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部