期刊文献+

同构Hadoop集群环境下改进的延迟调度算法 被引量:6

Improved delay-scheduler algorithm in homogeneous Hadoop cluster
下载PDF
导出
摘要 在Hadoop框架下计算资源和数据资源可以在不同物理位置的特点产生本地化问题。延迟调度算法的产生旨在解决本地化问题,此算法根据任务待处理数据的物理位置作为作业的计算节点,调度任务至目标节点。但是可能出现同一作业中若干任务集中运行在某一计算节点,导致作业达不到理想的并行效果。针对原有的延迟调度算法,提出延迟一容量调度算法,允许部分任务选择非本地化节点作为原延迟调度算法中任务的目标计算节点,以提高作业的响应时间与增加作业的并行程度。最后通过实验对比分析,改进后的算法在执行效率和并行效果明显优于原延迟调度算法。 Locality problem is caused by the physical location inconsistency between computing resource and data resource in Hadoop. Delay scheduling algorithm to solve locality problem which taking the physical location of task data to be processed as computing nodes and migrating task to the target nodes. However, it may appear with a work tasks focus on running in one computing node, resulting non-ideal parallelling effect in operation. To solver this problem, this paper proposed delay-capacity scheduler algorithm on the basis of delay scheduler algorithm, which allowed some task run on a node that did not contain its input data, so that decrease the job response time and improve the degree of job parallelization. Finally, through experimental analysis, the improved algorithm in efficiency and parallelization effect is obviously superior to the original delay scheduling al-
出处 《计算机应用研究》 CSCD 北大核心 2013年第5期1397-1401,共5页 Application Research of Computers
关键词 本地化 延迟调度 延迟-容量调度 locality delay scheduling delay-capacity scheduling
  • 相关文献

参考文献16

  • 1DEAN J, GHEMAWAT S. MapReduce: simplified data processing on large clusters[ J]. Communications of the ACM, 2008,53 (1) :107-113.
  • 2RALF L. Google's MapReduce programming model-revisited [ J ]. Science of Computer Programming, 2008,70( 1 ) : 1-30.
  • 3DEAN J, GHEMAWAT S. MapReduce: a flexible data processing tool[ J]. Communications of the ACM, 2010,53( 1 ) :72-77.
  • 4Apache Hadoop [ EB/OL]. http://hadoop, apache, org.
  • 5SHVACHKO K, KUANG Hai-rong, RADIA S, et al. The Hadoop distributed file system [ C ]//Proc of Mass Storage Systems and Tech- nologies. 2010 : 1-10.
  • 6ZAHARIA M. Job scheduling for multi-user MapReduce clusters, Tech,'Rep UCB/EECS- 2009- 55 [ R ]. Berkeley : EECS Department, University of California, 2009.
  • 7MATEI Z, DHRUBA B, JOYDEEP S, et al. Delay scheduling: a simple technique for achieving locality and fairness in cluster schedu- ling[ C]//Proc of the 5th European Conference on Computer Sys- tems. 2010:265-278.
  • 8HAMMOUD M, SAKR F. Locality-aware reduce task scheduling for MapReduce[ C]//Proc of the 3rd IEEE International Conference on Cloud Computing Technology and Science. 2011:570-576.
  • 9PARK J. Locality-aware dynamic VM reconfiguration on MapReduce clouds[ C ]//Proc of the 21st International Symposium on High-Per- formance Parallel and Distributed Computing. 2012:27-36.
  • 10ZHANG Xiao-hong, ZHONG Zhi-yong, FENG Sheng-zhong. Impro- ving data locality of MapReduce by scheduling in homogeneous com- puting environments[ C]//Proc of the 9th IEEE International Sympo- sium on Parallel and Distributed Processing with Applications. 2011 : 120-126.

同被引文献62

  • 1李千目,张晟骁,陆路,戚湧,张宏.一种Hadoop平台下的调度算法及混合调度策略[J].计算机研究与发展,2013,50(S1):361-368. 被引量:12
  • 2DEAN J, GHEMAWAT S. MapReduce: a flexible data processing tool[J]. Communications of the ACM,2010,53(1) :72-77.
  • 3GHEMAWAT S, GOBIOFF H, LEUNG S T. The Google file system '[ J]. CommunicatiOns of the ACM ,2003,37(5 ) :29-43.
  • 4ZAHARIA M, KONWINSKI A, JOSEPH A D,et al. Improving Map- Reduce performance in heterogeneous environment [ C ]//Proc of the 8th USENIX Conference on Operating Systems Design and [mp|emen- ration. Berkeley : USENIX Association ,2008:29-42.
  • 5ZAHARIA M, BORTHAKUR D, SARMA J S,et al. Job scheduling for multi-user MapReduce clusters, UCB/EECS-2009-55 [ R ]. Berke- ley : EECS Department, Univemity of California,2009.
  • 6GUO Zhen-hua, FOX G, ZHOU Mo. Investigation of data locality and fairness in MapReducel C ]//Proc of the 3rd International Work- shop on MapReduce and its Applications Date. 2012:25-32.
  • 7JIN Jia-hui, LUO Jun-zhou, SONG Ai-bo, et al. BAR: an efficient data locality driven task scheduling algorithm for cloud computing [ C l//Proc of the 11 th IEEE/ACM International Symposium on Clus- ter, Cloud and Grid Computing. 2011:295-304.
  • 8TIAN Chao, ZHOU Hao-jie, HE Yong-qiang,et al. A dynamic MapRe- duce scheduler for heterogeneous workloads [ C ]//Proc of the 8th In- ternational Conference on Grid and Cooperative Computing. 2009: 218-224.
  • 9ZENG Da-dan,WANG Xie-qin,JIANG Ning-kang. Distributed sched- uling extension on Hadoop [ C ]//Proe of the I st International Confer- ence on Cloud Computing. 2009:687-693.
  • 10Vaquero L, Rodero M L, Cacerce J, et al. A break in the clouds: towards a cloud definition [J]. SIGCOMM Computer Communica- tion Review, 2009, 39 (1): 50-55.

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部