期刊文献+

搜索引擎广告用户行为预测与特征分析 被引量:7

User behavior classification and feature analysis in search advertising
下载PDF
导出
摘要 介绍了搜索引擎广告系统的基本运作模式。通过对广告四元组的特征提取、特征值平滑等操作,将广告记录解析成为训练数据,并将数据分为训练集和测试集,使用支持向量机算法并利用训练集训练出的模型将测试集分类,从而预测出用户的行为。通过对特征的分析,得出对用户行为预测准确率影响最大的特征是点击率。实验证明,在使用该模型中所有特征的情况下,分类的准确率能够达到83.17%。 This paper first introduced the basic model of the search engine advertising system (SEAS), which pointed out us- er clicks were the source of revenue and reveals the importance to predict user behavior. After feature extraction and feature value smoothing on advertising 4-elements, resolved the advertising records into training data and divided then the training data into training set and testing set. It used training set to train the model by SVM and classify the test set to predict user behavior. The evaluation results based on real data show that the model can be used to predict the user behavior in SEAS. Finally, it proves that the most influential feature of user behavior prediction is the click-thought rate and the classification accuracy rate can reach 83.17% in the case of using all features of the model.
出处 《计算机应用研究》 CSCD 北大核心 2013年第5期1413-1418,共6页 Application Research of Computers
基金 国家自然科学基金资助项目(61272343) 国家教育部科技发展中心网络时代的科技论文快速共享专项研究资助课题(2011110)
关键词 搜索广告 支持向量机 点击率 准确率 广告质量特征 相似度特征 Key words: search advertising support vector machine ( SVM ) click-thought rate (CTR) accuracy ad quality features similarity features
  • 相关文献

参考文献18

  • 1LEE K, SEDA C, Search engine advertising: buying your way to the top to increase sales [ M ]. Thousand Oaks, CA : New Riders Publi- shing. 2009: 217-254.
  • 2JANSEN B J, MOLINA P R. The effectiveness of Web search engines for retrieving relevant ecommerce links[ J ]. Information Processing and Management: an International Journal, 2006,42 (4) : 1075- 1098.
  • 3ASHKAN A, CLARKE C, AGICHTEIN E, et al. Characterizing query intent from sponsored search clickthrough data [ C ]//Proe of SIGIR Workshop on Informational Retrieval for Advertising. 2008:15-22.
  • 4ASHKAN A, CLARKE C, AGICHTEIN E, et al. Classifying and characterizing query intent [ C ]//Proc of the 31 st European Confe-renee on IR Research on Advances in Information Retrieval. 2009:24-30.
  • 5DEMBCZY'NSKI K, KOTLOWSKI W, WEISS D. Predicting ads' click-through rate with deeision rules[ C ] //Proc of Workshop on Tar- get and Ranking for Online Advertising. 2008:21-25.
  • 6REGELSON M, FAIN D. Predicting click-through rate using keyword clusters[ C]//Proc of the 2nd Workshop on Sponsored Search Auc- tions. 2006.
  • 7GUO Wen-sheng, LI C-no-he. Predicting click rates by consistent bi- partite spectral graph model [ C ]//Proe of the 5th International Con- ferenee on Advanced Data Mining and Applications. 2009:17-19.
  • 8RICHARDSON M, DOMINOWSKA E, RAGNO R. Predicting clicks: estimating the click-through rate for new ads [ C ]//Proc of the 16th International Conference on World Wide Web. 2007:521-530.
  • 9CUI Ying, ZHANG Ruo-fei, LI Wei, et al. Bid landscape forecasting in online ad exchange marketplace [ C ]//Proe of the 17th ACM SICKDD International Conference on Knowledge Discovery and Data Mi- ning. 2011:21-24.
  • 10GOEL S, LAHAIE S, VASSILITSKII S. Contract auctions for spon- sored search[ C ]//Proc of the 5th International Workshop on Internet and Network Economics. 2009 : 14-18.

二级参考文献15

共引文献278

同被引文献56

引证文献7

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部