摘要
介绍了搜索引擎广告系统的基本运作模式。通过对广告四元组的特征提取、特征值平滑等操作,将广告记录解析成为训练数据,并将数据分为训练集和测试集,使用支持向量机算法并利用训练集训练出的模型将测试集分类,从而预测出用户的行为。通过对特征的分析,得出对用户行为预测准确率影响最大的特征是点击率。实验证明,在使用该模型中所有特征的情况下,分类的准确率能够达到83.17%。
This paper first introduced the basic model of the search engine advertising system (SEAS), which pointed out us- er clicks were the source of revenue and reveals the importance to predict user behavior. After feature extraction and feature value smoothing on advertising 4-elements, resolved the advertising records into training data and divided then the training data into training set and testing set. It used training set to train the model by SVM and classify the test set to predict user behavior. The evaluation results based on real data show that the model can be used to predict the user behavior in SEAS. Finally, it proves that the most influential feature of user behavior prediction is the click-thought rate and the classification accuracy rate can reach 83.17% in the case of using all features of the model.
出处
《计算机应用研究》
CSCD
北大核心
2013年第5期1413-1418,共6页
Application Research of Computers
基金
国家自然科学基金资助项目(61272343)
国家教育部科技发展中心网络时代的科技论文快速共享专项研究资助课题(2011110)
关键词
搜索广告
支持向量机
点击率
准确率
广告质量特征
相似度特征
Key words: search advertising
support vector machine ( SVM )
click-thought rate (CTR)
accuracy
ad quality features
similarity features