期刊文献+

基于波场模型的宽带相干源方位估计优化方法

Optimized DOA estimation method for wideband coherent signals based on wavefield modeling
下载PDF
导出
摘要 阵列流形内插方法(AMI)是一种基于波场模型的宽带聚焦方法。它无须角度预估,可以应用于任意已知结构的阵列,但其采样矩阵的截断点数通常选取较大,尤其在均匀线阵列下大大增加了运算量。针对这个问题,提出了一种采样矩阵优化方法,该方法利用贝塞尔函数的性质,重新构造了采样矩阵,使得新的采样矩阵在不损失信号信息的前提下,最大限度地降低运算量,从而有效缩短了运算时间。计算机仿真实验结果表明了该方法只需和阵元个数相同的截断点数就可以有效地实现方位估计,并获得与阵列流形内插方法相当的方位估计性能。 Array manifold interpolation method is a wideband focusing approach based on wavefield modeling, which does not require initial DOA estimates and can be applied to any array with a known arbitrary geometry. But it usually requires a big number of truncation points in the sampling matrix, especially in the uniform linear array, and the computation is increased greatly. To solve this problem,the paper proposed an optimal method using the character of Bessel function and reconstructed the sampling matrix. The new sampling matrix could spend less computation and time without losing the information of sources. At last the simulation results indicate that the proposed method can estimate the DOAs using the same truncation points to the number of array elements effectively and has a considerable performance with array manifold interpolation method.
出处 《计算机应用研究》 CSCD 北大核心 2013年第5期1461-1463,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(51179038) 声纳技术国家级重点实验室开放基金资助项目(KF201105)
关键词 信号处理 方位估计 阵列流形内插方法 波场模型 采样矩阵 signal processing DOA estimation array manifold interpolation method wavefield modeling sampling matrix
  • 相关文献

参考文献10

  • 1DORON M A DORON E. Wavefield modeling and array processing, part I --spatial sampling [ J]. IEEE Trans on Signal Processing, 1994,42 (10) :2549-2559.
  • 2DORON M A, DORON E. Wavefield modehng and array processing, Part ]]--algorithms [J]. IEEE Trans on Signal Processing,1994, 42(10) :2560-2570.
  • 3DORON M A, DORON E. Wavefield modeling and array processing, part Ill--resolution capacity [J]. IEEE Tmns on Signal Proces- sing,1994,42(10) :2571-2580.
  • 4DORON M A, NEVET A. Robust wavefield interpolation for adaptive wideband beamformiag [ J ]. Signal Processing, 2008,88 (6) : 1579- 1594.
  • 5BUCRIS Y,COHEN I,DORON M A, et al. Robust focusing for wide- band MVDR beamforming[ C]//Proc of IEEE Sensor Array and Multi- channel Signal Processing Workshop. IS. 1. ] :IEEE Press,2010:1-4.
  • 6BELLONI F, RICHTER A, KOIYUNEN V. DOA estimation via mani- fold separation for arbitrary array structures[ J]. IEEE Trails on Signal Processing ,2007,55(10) :4800-4810.
  • 7潘捷,周建江,汪飞.基于流形分离技术的稀疏均匀圆阵快速DOA估计方法[J].电子与信息学报,2010,32(4):963-966. 被引量:8
  • 8卢海杰,章新华,熊鑫.流形分离在非均匀圆阵上的应用[J].兵工学报,2011,32(9):1113-1117. 被引量:9
  • 9YANG Ping, YANG Feng, NIE Zai-ping, et al. Robust beamformer u- sing manifold separation technique for semispherical conformal array [J]. IEEE Antennas and Wireless Propagation Letters,2011, 10:1035-1038.
  • 10JIANG Biao, ZHU Ye, SUN Chang-yu. DOA estimation of wideband sources using a eonstant-Q subband coherent bfVDR method [ C ]/// Proc of International Conference on Signal Processing. [ S. 1. ] :IEEE Press, 2004 : 2437 - 2440.

二级参考文献29

  • 1Mathews C P and Zoltowski M D. Eigenstructure techniques for 2-D angle estimation with uniform circular arrays. IEEE Transactions on Signal Processing, 1994, 42(9): 2395-2407.
  • 2Davies D E N and Rudge A W. Ed. The Handbook of Antenna Design. London, UK, Peregrinus, 1983, Vol.2, Ch.12.
  • 3Lian Xiao-hua and Zhou Jian-jiang. 2-D DOA estimation for uniform circular arrays with PM. 7th International Symposium on Antennas, Propagation & EM Theory, Beijing, 2006: 1-4.
  • 4Belloni F and Koivunen V. Beamspace transform for UCA: Error analysis and bias reduction. IEEE Transactions on Signal Processing, 2006, 54(8): 3078-3089.
  • 5Belloni F, Richter A, and Koivunen V. Extension of root-MUSIC to non-ULA array configurations IEEE International Conference on Acoustics, Speech, Signal Processing (ICASSP), France, 2006: 897-900.
  • 6Belloni F, Richter A, and Koivunen V. DoA estimation via manifold separation for arbitrary array structures. IEEE Transactions on Signal Processing, 2007, 55(10): 4800-4810.
  • 7Costa M, Richter A, Belloni F, and Koivunen V. Polynomial rooting-based direction finding for arbitrary array configurations 5th IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM08) Germeny, 2008: 58-62.
  • 8Doron M A and Doron E. Wavefield modeling and array processing, Part I Spatial sampling. IEEE Transactions on Signal Processing, 1994, 42(10): 2549-2559.
  • 9Rubsamen M and Gershman A B. Performance analysis of root-music-based direction-of-arrival estimation for arbitrary non-uniform array, 5th IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM08), Germeny. 2008: 381-385.
  • 10Goossens R, Rogier H, and Werbrouck S. UCA root-MUSIC with sparse uniform circular arrays. IEEE Transactions on Signal Processing, 2008, 56(8): 4095-4099.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部