期刊文献+

波动率度量模型的评价方法:拟合优度和平滑性 被引量:4

Evaluating method of volatility models:Goodness-of-fit and smoothness
下载PDF
导出
摘要 提出了一种评价波动率模型的方法,与文献中已有准则有较大不同.该方法兼顾了模型拟合新息平方序列的能力和模型的平滑性,而避免了经典的评价方法只考虑模型拟合能力的缺陷.该方法有利于投资者挑选出交易成本相对较低和风险对冲能力相对较强的波动率模型.实证例子是估计中国股票市场的行业时变风险:对三大类波动率模型进行了评价,并指出评价方法或标准的选择直接影响金融风险估计或预测的评价结果. This paper proposes one method to evaluate the volatility models, which differs a lot from the meth- ods mentioned in the literatures. This method combines the goodness-of-fit and the smoothness of models, and avoids the defect of the traditional assessing methods which only take the goodness-of-fit into consideration. This method may help investors to select the volatility models which reduce the transaction costs and increase the risk hedging powers to the highest degree. The empirical example discussed in this paper is to estimate the industry time-varying risk of Chinese stock markets. Three classes of volatility models were evaluated, which indicates that the choice of evaluation methods or criteria directly affects the evaluation results of the financial risk estimation and prediction.
出处 《系统工程学报》 CSCD 北大核心 2013年第2期194-201,共8页 Journal of Systems Engineering
基金 国家自然科学基金资助项目(71003100) 教育部人文社会科学研究资助项目(11YJC630270) 中央高校基本科研业务费专项资金资助项目(11XNK027 10XNF020)
关键词 波动率 波动率评价 金融风险 时变风险 volatility volatility evaluation financial risk time-varying risk
  • 相关文献

参考文献18

  • 1Moix P Y. The Measurement of Market Risk: Modelling of Risk Factors, Asset Pricing, and Approximation of Portfolio Distribu- tions[M]. New York: Springer-Veflag, 2001.
  • 2Daly K. Financial volatility: Issues and measuring techniques[J]. Physica A, 2008, 387(11): 2377-2393.
  • 3Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflations[J]. Economet- rica, 1982, 50(4): 987-1007.
  • 4Bollerslev T. Generalised autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 31(3): 307-327.
  • 5Bollerslev T, Engle R, Nelson D. ARCH models[C]//Engle R F, McFadden D L. Handbook of Econometrics. Amsterdam: North Holland, 1994: 2959-3038.
  • 6Pagan A R, Schwert G W. Alternative models for conditional stock volatility[J]. Journal of Econometrics, 1990, 45(1/2): 267-290.
  • 7Bollerslev T, Ghysels E. Periodic autoregressive conditional heteroskedasticity[J]. Journal of Business and Economic Statistics, 1996, 14(2): 139-157.
  • 8Lopez J A. Evaluating the predictive accuracy of volatility models[J]. Journal of Forecasting, 2001, 20(2): 87-109.
  • 9Fama E E The behavior of stock market prices[J]. Journal of Business, 1965, 38(1): 34-105.
  • 10Nelson D 13. Conditional heteroskedasticity in asset returns: A new approach[J]. Econometrica, 1991, 59(2): 347-370.

二级参考文献14

  • 1Engle R F. Autoregressive conditional heteroscedasticity with estimates of UK inflation [J]. Econometrica, 1932, 50(4) : 987 - 1008.
  • 2Bollerslev T. Generalized autoregressive conditional heteroskedasticity [J]. Journal of Econometrics, 1986, 31 (3) : 307 - 327.
  • 3Nelson D B. Conditional heteroskedasticity in asset returns: A new approach [J]. Econometrica, 1991, 59(2) : 347 - 370.
  • 4Cai J. A Markov model of unconditional variance in ARCH [J]. Journal of Business and Economic Statistics, 1994, 12(3) : 309 - 316.
  • 5Hamilton J D, Susmel R. Autoregressive conditional heteroskedasticity and changes in regime [J]. Journal of Econometrics, 1994, 64(1) : 307 - 333.
  • 6Gray S F. Modeling the conditional distribution of interest rates as a regime-switching process[J]. Journal of Financial Economics, 1996, 42(1): 27 - 62.
  • 7Klaassen E Improving GARCH volatility forecasts[J]. Empirical Economics, 2002, 27(2) : 363 - 394.
  • 8Henry Olan T. Regime switching in the relationship between equity returns and short-term interest rates in the UK[J]. Journal of Banking and Finance, 2009, 33(2): 405 - 414.
  • 9Marcucci J. Forecasting stock market volatility with regime-switching GARCH models[J]. Studies in Nonlinear Dynamics & Econometrics, 2005, 9(4): 1 - 53.
  • 10Lopez J A. Evaluating the predictive accuracy of volatility models[J]. Journal of Forecasting, 2001, 20(2) : 87 - 109.

共引文献14

同被引文献45

  • 1祁斌,黄明,陈卓思.机构投资者与股市波动性[J].金融研究,2006(9):54-64. 被引量:181
  • 2王新宇,宋学锋,吴瑞明.基于AAVS-CAViaR模型的股市风险测量研究[J].系统工程学报,2010,25(3):326-333. 被引量:13
  • 3Engle R F, Manganelli S. CAViaR: Conditional autoregressive value at risk by regression quantiles. Journal of Business and EconomicStatistics, 2004, 22(4): 367-381.
  • 4Morgan J. Riskmetrics: Technical Document. New York: Morgan Guaranty Trust Company, 1996.
  • 5Diebold F X,Schuermann T, Stroughair J D. Pitfalls and opportunities in the use of extreme value theory in risk management. Journalof Risk Finance, 2000, 1(2): 30-35.
  • 6McNeil A J, Frey R. Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach.Journal of Empirical Finance, 2000, 7(3): 271-300.
  • 7Taylor J W. Using exponentially weighted quantile regression to estimate value at risk and expected shortfall. Journal of FinancialEconometrics, 2008, 6(3): 382-406.
  • 8Koenker R, Bassett G W. Regression quantiles. Econometrica, 1978,46(1): 33-50.
  • 9Taylor J W. A quantile regression neural network approach to estimating the conditional density of multiperiod returns. Journal ofForecasting, 2000, 19(4): 299-311.
  • 10Cannon A J. Quantile regression neural networks: Implementation in R and application to precipitation downscaling. Computers &Geosciences, 2011,37(9): 1277-1284.

引证文献4

二级引证文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部