期刊文献+

基于模糊双合作博弈的收益分配模型 被引量:9

Model of profit allocation based on fuzzy bicooperative game
原文传递
导出
摘要 产品服务化供应链中,多个提供商向系统集成商提供产品和服务,获得了产品和服务收益.以提供商的双重收益分配为例,将提供商的服务质量作为参与程度,在双合作博弈的基础上,提出了模糊双合作博弈的收益分配模型,定义了Aubin核心和crisp核心,证明了凸模糊双合作博弈中,韦伯集与crisp核心相等且是Aubin核心的子集,并证明了提供商的服务质量提高时,参与的联盟越大,边际收益越大,从而保证最优分配方案的存在性和模糊双联盟结构的稳定性. In the product servitization supply chain, the multiple providers provide products and services to the system integrators and gain the profits of products and services. Taking the double profit allocation of the providers as an example, the profit allocation model of the fuzzy bicooperative game is presented by the service quality of the provider as participation based on the bicooperative game. The Aubin core and the crisp core of the fuzzy bicooperative game are defined. It is proved that the Weber set is consistent with the crisp core and the Weber set is the subset of the Aubin core, and the greater the alliance, the greater the marginal profit with the service quality of the provider increases in the convex fuzzy bicooperative game, which indicate that the optimal allocation is existent and the fuzzy bicoalition is stable.
出处 《控制与决策》 EI CSCD 北大核心 2013年第5期701-705,共5页 Control and Decision
基金 国家自然科学基金项目(71272117) 陕西省软科学基金项目(2009K01-94) 陕西省高校重点学科基金项目(107-00X902)
关键词 提供商 模糊双合作博弈 核心 韦伯集 provider fuzzy bicooperative game. core Weber set
  • 相关文献

参考文献14

  • 1Owen G. Game theory[M]. New York: Academic Press, 1995.
  • 2占家权,张强.一类模糊合作博弈资源与收益分配研究[J].运筹与管理,2010,19(2):8-11. 被引量:5
  • 3孙红霞,张强.基于联盟结构的模糊合作博弈的收益分配方案[J].运筹与管理,2010,19(5):84-89. 被引量:18
  • 4Gillies D B. Some theorems on n-person games[M]. Princeton: Princeton University Press, 1953.
  • 5Weber R J. Probabilistic values for games[M]. Cambridge: Cambridge University Press, 1988.
  • 6Shapley L S. Cores of convex games[J]. Int J of Game Theory, 1971, 1(1): 11-26.
  • 7Ichiishi T. Supermodularity: Application to convex games and greedy algorithm for LP[J]. J of Economy Theory, 1981, 25(2): 283-286.
  • 8Rodica Branzei, Dinko Dimitrov, Stef Tijs. Models in cooperative game theory[M]. Berlin: Springer, 2008.
  • 9Bilbao J M. Cooperative games on combinatorial structures[M]. Bosten: Kluwer Academic Publishers,.
  • 10Bilbao J M, Fernandez J R, Jimenez N, et al. The core and the Weber set for bicooperative games[J]. Int J of Game Theory, 2007, 36(2): 209-222.

二级参考文献23

  • 1Aubin J P, Coeur et valeur des jeux flous a paiements lateraux [ J]. Comptes Rendus Hebdomadaires des S6ances de 1' Acad6mie des Sciences, 1974, (279) : 891-894.
  • 2Aubin J P, Coeur et equilibres des jeux flous sans paiements lateraux[ J]. Comptes Rendus Hebdomadaires des Seances de l ' Academic des Sciences, 1974, (279) : 963-966.
  • 3Aubin JP, Mathematical methods of game and economic theory[ M ]. Rev. ed. , North-Holland, Amsterdam, 1982.
  • 4Butnariu D, Stability and shapley value for an n-persons fuzzy game[ J]. Fuzzy Sets and Systems, 1980, 4:63 - 72.
  • 5Shapley L S, A value for n-person games[A]. Annals of Mathematics Studies[C]. 1953, 28:307 - 318.
  • 6Tsurumi M, A Shapley function on a class of cooperative fuzzy games[J]. European Journal of Operational Research, 2001, 129: 596-618.
  • 7Sugeno M, Murofushi T, Choquet' s integral as an integral form for a general class of fuzzy measures[ A]. Preprints of Second IFSA Congress[ C]. 1987, 1: 408-411.
  • 8Grabisch M, Labreuche C. Bi-capacities-II: the choquet integral[J]. Fuzzy Sets and Systems, 2005, 151: 237-259.
  • 9Grabisch M, Capacities and games on lattices: a survey of results [ J]. International Journal of Uncertainty Fuzziness and Knowledge-based Systems, 2005, 14:371 - 392.
  • 10Yu XH, Zhang Q, Shapley value for cooperative games with fuzzy coalition[ J]. Journal of Beijing Institute of Technology, 2007, 17: 249-252.

共引文献19

同被引文献60

引证文献9

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部