期刊文献+

直觉模糊群决策中专家权重确定的一种精确方法 被引量:17

Accurate method of obtaining decision expert weights in intuitionistic fuzzy group decision making
原文传递
导出
摘要 在直觉模糊群决策中,一般通过赋权法对不同专家或决策者进行有效区分,相关研究多偏重等值赋权与主观赋权,但两者均存在不足.基于此,提出一种仅依靠非犹豫度(专家对属性的非犹豫程度意味着对该属性信息的掌握程度)的精确加权(AWD)方法,并证明了该方法的单调性与尺度不变性.在AWD方法基础上,提出FOAWA和IFOAWG算子,证明了新算子的幂等性、有界性与交换性.最后,通过算例展示了所提出方法的可行性和有效性. The weight-determined method is a good technique to distinguish different experts in intuitionistic fuzzy group decision making, such as the equal-weight method and the subjective weight-determined method. However, there are some puzzles in these two weight-determined methods. Therefore, an accurate weight-determined(AWD) method based on the membership and non-membership is proposed. The main idea of the AWD method is that putting larger weight into the expert with more attribute information. Then the monotonicity and the scale-invariance of the AWD method are investigated. Based on the AWD method, two intuitionistic fuzzy ordered accurate weighted aggregation operators are developed, and their properties are investigated in detail. Finally, a practical example is provided to illustrate the feasibility and effectiveness of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2013年第5期716-720,725,共6页 Control and Decision
基金 国家973计划项目(2010CB328104-02) 国家自然科学基金项目(71071034) 江苏省普通高校研究生科研创新计划项目(CXZZ-0183) 教育部博士研究生学术新人奖资助项目
关键词 直觉模糊数 群决策 精确加权方法 单调性 尺度不变性 intuitionistic fuzzy number: group decision making: AWD method monotorticity scale-invariance
  • 相关文献

参考文献15

  • 1Atanassov K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.
  • 2Xu Z S. Intuitionistic fuzzy aggregation operators[J]. IEEE Trans on Fuzzy Systems, 2007, 15(6): 1179-1187.
  • 3Yager R R. On ordered weighted aggregation operators in multicriteria decision making[J]. IEEE Trans on Systems Man'and Cybernetics, 1988, 18(1): 183-190.
  • 4Yager R R. Generalized OWA aggregation operators[J]. Fuzzy Optimization and Decision Making, 2004, 3(1): 93- 107.
  • 5Zhao H, Xu Z S, Ni M E et al. Generalized aggregation operators for intuitionistic fuzzy sets[J]. Int J of Intelligent Systems, 2010, 25(1): 1-30.
  • 6O'Hagan M. Aggregating template rule antecedents in real timeexpert systems with fuzzy set logic[C]. Proc of the 22nd Annual IEEE Asilomar Conf on Signals, Systems and Computers. California, 1988: 681-689.
  • 7Filev D, Yager R R. On issue of obtaining OWA operator weights[J]. Fuzzy Sets and Systems, 1998, 94(2): 157-169.
  • 8Nettleton D, Torra V. A comparison of active set method and genetic algorithm approaches for learning weighting vectors in some aggregation operators[J]. Int J of Intelligent Systems, 2001, 16(9): 1069-1083.
  • 9Fuller R, Majlender P. On obtaining minimal variability OWA operator weights[J]. Fuzzy Sets and Systems, 2003, 136(2): 203-215.
  • 10Wang Y M, Parkan C. A minimax disparity approach for obtaining OWA operator weights[J]. Information Sciences, 2005, 175(1/2): 20-29.

二级参考文献12

  • 1Atanassov K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.
  • 2Li D E Multi-attribute decision making models and methods using intuitionistic fuzzy sets[J]. J of Computer and Systems Sciences, 2005, 70(1): 73-85.
  • 3Lin L, Yuan X H, Xia Z Q. Multi-criteria fuzzy decision- making methods based on intuitionistic fuzzy sets[J]. J of Computer and System Sciences, 2007, 73(1): 84-88.
  • 4Liu H W, Wang G J. Multi-criteria decision-making methods based on intuitionistic fuzzy sets[J]. European J of Operational Research, 2007, 179(1): 220-233.
  • 5Xu Z S, Yager R R. Some geometric aggregation operators based on intuitionistic fuzzy sets[J]. Int J of General System, 2006, 6(5): 417-433.
  • 6Xu Z S. Intuitionistic fuzzy aggregation operators[J]. IEEE Trans on Fuzzy Systems, 2007, 15(6): 1179-1187.
  • 7Wei G W. Some geometric aggregation functions and their application to dynamic multiple attribute decision malting in the intuitionistic fuzzy setting[J]. Int J of Uncertain Fuzziness Knowledge Based System, 2009, 17(1): 179- 196.
  • 8Tan C, Chen X. Intuitionistic fuzzy Choquet integral operator for multi-criteria decision making[J]. Expert Systems with Applications, 2010, 37(1): 149-157.
  • 9Yager R R. Prioritized aggregation operators[J]. Int J of Approximate Reasoning, 2008, 48(2): 263-274.
  • 10Yager R R. Prioritized OWA aggregation[J]. Fuzzy Optimization Decision Making, 2009, 10(8): 245-262.

共引文献16

同被引文献190

引证文献17

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部