期刊文献+

基于模糊相似度融合的图像复原算法 被引量:6

Image Restoration Algorithm Based on Fusion with Fuzzy Similarity
下载PDF
导出
摘要 传统的图像复原技术主要是通过单一的方法对图像进行复原,而图像融合技术主要集中于对多聚焦图像融合和多源图像融合.文中从图像融合的基本思路出发,基于局部特征信息的模糊相似度的融合策略将多幅复原图像进行融合,提出基于模糊相似度融合的图像复原算法.首先依据区域特征(方差、梯度和均值)确定模糊相似度,然后将具有一定相似性的复原图像进行基于像素点加权平均,权系数由该像素点处的区域特征确定,最后获得融合图像;对不具有一定相似性的复原图像按照"最大值选取"原则,依据"区域特征较明显者提取像素点"来获得融合图像.实验结果表明,该算法复杂度小,融合后复原图像改善的信噪比比融合前提高了0.1~1dB;同时,比经典算法的效果有明显改善. Traditionally image restoration technology is mainly focused on restoring the image with single method. Image fusion technology is applied on multi-focused images fusion and multi-source images fusion. Inspired by fusion strategy, some restored images are fused into one image based on fuzzy similarity. So an image restoration algorithm based on fusion with fuzzy similarity is proposed. First, compute the fuzzy similarity based on region character (gradient, variation and mean), then some restored images which have certain similarity are weighted based on pixel, and some another images having not similarity are obey "maximum value selection" principle and the final fusion image are determined. Experimental results show that the improved signal noise ratio (ISNR) of fusion image is 0.1-1 dB better than before. "At the same time, the results are better than traditional method.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2013年第5期616-621,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61202183 61102095 61100165) 陕西省教育厅专项科学研究计划(12JK0731 12JK0504 12JK0734 12JK0543) 西安邮电大学校青年基金(ZL201201) 陕西省自然科学基础研究计划项目(2012JQ8045)
关键词 图像复原 图像融合 模糊相似度 迭代阈值 image restoration image fusion fuzzy similarity iteration threshold
  • 相关文献

参考文献14

  • 1Chan T, Shen J H. Image processing and analysis.. variational, pde, wavelet, and stochastic methods[M]. Philadelphia: Society for Industrial and Applied Mathematics (SIAM) Press, 2005.
  • 2Bioucas-Dias J, Figueiredo M A T, Oliveira J D. Adaptive total variation image deconvolution : a majorization- minimization approach [C] //Proceedings of the 14th European Signal Processing Conference. Poland: European Signal Processing Conference Press, 2006.
  • 3Chan T F, Wong C K. Total variation blind deconvolution [J]. IEEE Transactions on Image Processing, 1998, 7(3): 370-375.
  • 4Bioucas-Dias J M, Figueiredo M A T. A new TWIST.. two-step iterative shrinkage thresholding algorithms for image restoration [J]. IEEE Transactions on Image Processing, 2007, 16(12): 2992-3004.
  • 5Kim S, Kang W, Lee E, et al. Vaguelette-wavelet decomposition for frequency adaptive image restoration using directional wavelet bases [J]. IEEE Transactions on Consumer Electronics, 2011, 57(1): 218-223.
  • 6Upla K P, Gajjar P P, Joshi M V. Multiresolution fusion using eontourlet transform "based edge learning [C] [] Proceedings of IEEE International Geoscienee and Remote Sensing Symposium. Los Alamitos IEEE Computer Society Press, 2011:523-526.
  • 7Arif M H, Saqlain S M, Iqbal M. Wavelet based multi-focus image fusion using adaptive sized blocks [C] ]/Proceedings of the 13th International Multitopic Conference. Los Alamitos: [EEE Computer Society Press, 2009, 1-5, 14-15.
  • 8Pham T D. An image restoration by fusion [J]. Pattern Recognition, 2001, 34(12) 2403-2411.
  • 9Maik V, Cho D, Shin J, et al. Regularized restoration using image fusion for digital auto-focusing[J]. IEEE Transactions on Circuits and Systems for Video Technology. 2007, 17 (10) ; 1360-1369.
  • 10Yang B, Li S T. Multifocus image fusion and restoration with sparse representation [J]. IEEE Transactions on Instrumentation and Measurement. 2010, 59(4): 884-892.

二级参考文献10

  • 1刘志刚,钱清泉.自适应阈值多小波故障暂态信号去噪方法[J].系统工程与电子技术,2004,26(7):878-880. 被引量:15
  • 2Grace Chang S, Yu Bin, Martin Vetterli. Adaptive wavelet thresholding for image denoising and compression[J]. IEEE Trans. on Image Processing, 2000, 9(9): 1532 - 1546.
  • 3Abramovich F, Sapatinas T, Silverman B W. Wavelet thresholding via a Bayesian approach[J]. J. R. Statist. Soc. Ser. B, 1998, 1(2):725 - 749.
  • 4Grace Chang S, Yu Bin, Martin Vetterli. Spatially adaptive wavelet thresholding with context modeling for image denoising[J]. IEEE Trans. on Image Processing, 2000, 9(9): 1522 - 1531.
  • 5Mihcaak M K, Kozintsev I, Ramchandran K, et al. Low-complexity image denolsing based on statistical modeling of wavelet coefficients[J]. IEEE Signal Processing Letters, 1999, 6(12): 300-303.
  • 6Donobo D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage [J]. Biometrika, 1994, 81:425-455.
  • 7Stein C. Estimation of the mean of a multivariate normal distribution[J]. Annals of Statistics, 1981, 9(6): 1135 - 1151.
  • 8Shi Guangmin, Li Fudong. Image denoising with optimized subband threshold[J]. ICCIMA, 2003, 7: 27- 30.
  • 9Stephane Mallat. A wavelet tour of signal processing [ M ]. Academic Press, 1998.
  • 10Fodor IK, Chandrika Kamath. On denoising images using waveletbased statistical technique[EBOL]. Lawrence Livermore National Lab.Technical Report, Livermore, CA, http:∥www. llnl. gov/CASC /people / fod-or/fodor, 2001.

共引文献44

同被引文献31

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部