期刊文献+

应用哈密顿回路的三角网格拓扑压缩 被引量:5

Connectivity Compression of Triangle Meshes Based on Hamiltonian Cycle
下载PDF
导出
摘要 为进一步优化三角网格的拓扑编码压缩率,提出一种高效的三角网格无损拓扑压缩算法.与已有的拓扑压缩算法对三角网的遍历顺序不同,该算法沿哈密顿回路对网格进行以面为单位的拓扑压缩,可以仅用HETS共4种操作符表示原始网格的拓扑信息,降低了操作符序列的熵;此外,利用序列中各操作符的相互关系对操作符成对进行组合熵编码,缩短了操作符序列的长度.实验结果表明,较当前各类拓扑压缩算法,文中算法处理各种三角网格模型获得的压缩率有很大降低. We presented an efficient encoding algorithm for lossless compression of triangle mesh connectivity to optimize the compression ratio. Different from the traversal order of the former connectivity compression algorithms on the triangle mesh, this algorithm compresses the mesh face by face following the Hamiltonian cycle, and can adopt only four operators to represent the connectivity of the original mesh, which reduces the entropy of the operators. On the other hand, the length of the operator sequence can be shortened by encoding the operators in pairs. Experimental results show that the algorithm proposed in this paper can achieve much lower compression ratios on various triangle meshes than current connectivity compression algorithms.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2013年第5期697-707,共11页 Journal of Computer-Aided Design & Computer Graphics
基金 国家"八六三"高技术研究发展计划(2009AA01Z303)
关键词 拓扑压缩 哈密顿回路 三角网格 算术编码 connectivity compression Hamiltonian cycle triangle mesh arithmetic coding
  • 相关文献

参考文献25

  • 1Peng J L, Kim C-S, Kuo C-C J. Technologies for 3D mesh compression: a survey [J]. Journal of Visual Communication and Image Representation, 2005, 16(6) : 688-733.
  • 2Alliez P, Gotsman C. Recent advances in compression of 3D meshes [OL]. [2012-05-07]. http://hal, archives-ouvertes. fr/docs/00/07/16/13/PDF/RR-4966, pdf.
  • 3Tutte W T. A census of planar triangulations [J] Canadian Journal of Mathematics, 1962, 14(1962): 21-38.
  • 4Touma C, Gotsman C. Triangle mesh compression [C] Proceedings of Graphics Interface. Lethbridge: Canadian Human-Computer Communications Society Press, 1998: 26- 34.
  • 5Alliez P, Desbrun M. Valence-driven connectivity encoding for 3D meshes [J]. Computer Graphics Forum, 2001, 20(3) : 480-489.
  • 6Khodakovsky A, Alliez P, Desbrun M, et al. Near-optimal zonneetivity encoding of 2-manifold polygon meshes [J]. ,.q-raphical Models-Special issue: Processing on Large Polygonal Meshes, 2002, 64(3/4): 147-168.
  • 7Lee H, Alliez P, Desbrun M. Angle-analyzer a triangle-quad meshcodec [J]. Computer Graphics Forum, 2002, 21(3) 383-392.
  • 8Isenburg M, Snoeyink J. Early-split coding of triangle mesh connectivity [C] /] Proceedings of Graphics Interface. Toronto: Canadian Information Processing Society Press, 2006 89-97.
  • 9Isenburg M, Snoeyink J. Face fixer: compressing polygon meshes with properties [C] // Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. New York: ACM Press, 2000:263-270.
  • 10Rossignac J. Edgebreaker: connectivity compression for triangle meshes [J]. IEEE Transactions on Visualization and Computer Graphics, 1999, 5(1) : 47-61.

二级参考文献33

  • 1Alliez P,Desbrun M.Valence-driven connectivity encoding for 3D meshes[C]//Proceedings of Eurographics,Manchester,2001:480-489
  • 2Touma C,Gotsman C.Triangle mesh compression[C]//Proceedings of Graphics Interface,New York,1998:26-34
  • 3Isenburg M,Snoeyink J.Face fixer:compressing polygon meshes with properties[C]//Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,New Orleans,2000:263-270
  • 4Gumhold S,Strasser W.Real time compression of triangle mesh connectivity[C]//Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,New York,1998:133-140
  • 5Isenburg M,Snoeyink J.Spirale reversi:reverse decoding of edgeBreaker encoding[J].Computational Geometry,2001,20(1):39-52
  • 6Jong B S,Yang W H,Tseng J L,et al.An efficient connectivity compression for triangular meshes[C]//Proceedings of the 4th Annual ACIS International Conference on Computer and Information Science.Washington D C:IEEE Computer Society Press.2005:583-588
  • 7Rossignac J.Edgebreaker:connectivity Compression for triangle meshes[J].IEEE Transactions on Visualization and Computer Graphics,1999,5(1):47-61
  • 8Szymczak D,King D,Rossignac J.An edgebreaker based efficient compression scheme for regular meshes[C]//Prgceedings of the 12th Canadian Conference on Computational Geometry,Fredericton,New Brunswick,2000:53-68
  • 9Gotsman C,Gumhold S,Kobbelt L.Simplification and compression of 3D meshes[C]//Iske A,Quak E,Floater M S.Tutorials on Multiresolution in Geometric Modelling.New York:Springer-Verlag,2002:319-361
  • 10Huffman D A.A method for the construction of minimumredundancy codes[J].Proceedings of the Institute of Radio Engineers,1952,40(9):1098-1101

共引文献7

同被引文献24

  • 1席裕庚,柴天佑,恽为民.遗传算法综述[J].控制理论与应用,1996,13(6):697-708. 被引量:349
  • 2刘迎,刘学慧,吴恩华.基于模版的三角网格拓扑压缩[J].计算机辅助设计与图形学学报,2007,19(6):703-707. 被引量:6
  • 3Carey R, Bell G, Marrin C. ISO/IEC 14772-1: 1997 Virtual Reality Modeling Language (VRML97)[S]. The VRML Consortium Incorporated, 1997: 34.
  • 4Taubin G, Rossignac J. Geometric Compression through Topological Surgery[J]. ACM Transactions on Graphics, 1998, 17(2): 84-115.
  • 5Rossignac J. Edgebreaker: Connectivity Compression for Triangle Meshes[J]. IEEE Transactions on Visualization and Computer Graphics,1999, 5(1): 47-61.
  • 6Alliez P, Desbrun M. Valence-driven Connectivity Encoding for 3D Meshes[J]. Computer Graphics Forum, 2001, 20(3): 480-489.
  • 7Cheng S C, Kuo C T, Wu D C. A Novel 3D Mesh Compression Using Mesh Segmentation with Multiple Principal Plane Analysis[J]. Pattern Recognition, 2010, 43(1): 267-279.
  • 8Gurung T, Luffel M, Lindstrom P, et al. LR: Compact Connectivity Representation for Triangle Meshes[J]. ACM Transactions on Graphics, 2011, 30(4): 1-8.
  • 9Gurung T, Luffel M, Lindstrom P, et al. Zipper: A Compact Connectivity Data Structure for Triangle Meshes[J]. Computer-Aided Design, 2013, 45(2): 262-269.
  • 10Luffel M, Gurung T, Lindstrom P, et al. Grouper: A Compact, Streamable Triangle Mesh Data Structure[J]. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(1): 84-98.

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部