期刊文献+

复杂边界几何体的结构网格生成方法 被引量:8

A Structured Mesh Generation Method for Complex Boundary Geometry
下载PDF
导出
摘要 高质量的结构网格能够有效地提高有限元分析的精度.针对受限于结构网格节点分布的特殊要求,使当前的结构网格生成方法无法直接应用于边界复杂的几何体这一问题,提出结构网格生成方法.对于边界复杂的多边形区域,依据边界顶点分类,在计算空间内将边界简化为规则形状,在简化的多边形区域内进行分割并填充结构网格,再将其映射回原区域;对于边界特殊的三角形、圆形区域,依据边界节点分布计算分割线,将原区域分割为简单的四边形区域组合,再对各四边形区域分别进行结构网格填充;对于不同区域网格的连接,将区域边界相连并设置棱边方向,通过转化相应的棱边方向矩阵得出棱边方向闭合的多边形边界,在多边形边界内填充结构网格形成不同区域网格间的有效过渡.实例验证结果表明,该方法稳定、高效,能够解决复杂边界几何体的结构网格划分问题. High-quality structured mesh is essential in finite element analysis. Limited by special requirement of node distribution in the structured mesh, current structured mesh generation methods are hard to be directly applied to geometries with complex boundary. To solve this problem, a new structured mesh generation method is proposed. For polygon area with complex boundary, the shape of boundary is simplified to be regular in computational space based on vertex classification, the simplified polygon area is splitted and filled with structured mesh, and then the structured mesh is mapped back to original area; for triangular and circular areas with special boundary, splitting lines are calculated based on the boundary node distribution to split original area into simple quadrilateral areas, each quadrilateral area is filled with structured mesh; for transition between neighbored meshing areas, different boundaries are linked and direction of boundary edges are set, the polygons with close direction boundary edges are identified through the transformation of the corresponding matrix of boundary edges, each identified polygon is filled with structured mesh to form an effective transition between different meshing areas. Examples verify the efficiency of the proposed method.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2013年第5期724-730,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家"九七三"重点基础研究发展计划项目(2009CB724205) 国家科技重大专项项目(02专项2011ZX02403-005) 湖北省自然科学基金(2012FB06904)
关键词 有限元分析 网格自动划分 结构网格 网格映射 finite element analysis automatic meshing structured mesh mesh mapping
  • 相关文献

参考文献11

  • 1Schonning A, ()ommen B, Ionescu I, etal. Hexahedral mesh development of free-formed geometry: the human femur exemplified [J]. Computer-Aided Design, 2009, 41(8) : 566- 572.
  • 2Shepherd J F, Johnson C R. Hexahedral mesh generation constraints [J]. Engineering with Computers, 2008, 24(3): 195-213.
  • 3Kawamura Y, Islam M S, Sumi Y. A strategy of automatic hexahedral mesh generation by using an improved whisker- weaving method with a surface mesh modification procedure [J]. Engineering with Computers, 2008, 24(3): 215-229.
  • 4Yamakawa S, Shimada K. Converting a tetrahedral mesh to a prism-tetrahedral hybrid mesh for FEM accuracy and efficiency [J] International Journal for Numerical Methods in Engineering, 2009, 80(1) : 74-102.
  • 5陈建军,郑耀.多子域网格生成方法中健壮保质的型模板[J].计算机辅助设计与图形学学报,2005,17(10):2286-2292. 被引量:8
  • 6Ruiz-Giron6s E, Sarrate J, Generation of structured meshes in multiply connected surfaces using submapping [J]. Advances in Engineering Software, 2010, 41(2) 379-387.
  • 7Su Y, Lee K H, Kumar A S. Automatic hexahedral mesh generation using a new grid-based method with geometry and mesh transformation [J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39-41)= 4071-4096.
  • 8苏财茂,柯映林.多面约束棱台体全六面体网格生成算法[J].计算机辅助设计与图形学学报,2003,15(10):1263-1269. 被引量:6
  • 9Ruiz-Girons E, Sarrate J. Generation of structured hexahedral meshes in volumes with holes [J]. Finite Elements in Analysis and Design, 2010, 46(10): 792-804.
  • 10Li T S, Armstrong C G, Mckcag R M. Quad mesh generation {or k-sided {aces and hex mesh generation {or trivalent polyhedra [J] Finite Elements in Analysis and Design, 1997, 26(4): 279-301.

二级参考文献19

  • 1李华,程耿东,顾元宪.一种新的全四边形网格快速生成方法─—模板法[J].计算结构力学及其应用,1996,13(1):25-33. 被引量:18
  • 2Tautges T J. The generation of hexahedral meshes for assembly geometry: Survey and progress [J]. International Journal for Numerical Methods in Engineering, 2001, 50 (12) : 2617 -2642.
  • 3Zienkiewicz O C, Phillips D V. An automatic mesh generation scheme for phane and curved surfaces by isoparametric coordinates [J]. International Journal for Numerical Methods in Engineering, 1971, 3(4): 519-528.
  • 4Cook W A. Body oriented (natural) co-ordinates for generating three-dimensional meshes [J]. International Journal for Numerical Methods in Engineering, 1974, 8(1) : 27-43.
  • 5Cook W A, Oakes W R. Mapping methods for generating threedimensional meshes [J ]. Computers in Mechanical Engineering,1983, 1(1): 67-72.
  • 6Chinnaswmy C, Amadei B, Illangasekare T H. A new method for finite element transitional mesh generation [J ]. International Journal for Numerical Methods in Engineering, 1991, 31 (7):1253- 1270.
  • 7Li T S, McKeag R M, Armstrong C G. Hexahedral meshing using midpoint subdivision and integer programming [J]. Computer Methods in Applied Mechanics and Engineering,1995, 124(1/2) : 171-193.
  • 8Li T S, Armstrong C G, McKeag R M. Quad mesh generation for k-sided faces and hex mesh generation for trivalent polyhedra[J]. Finite Elements in Analysis and Design, 1997, 26(4):279- 301.
  • 9Cheng Gengdong, Li Hua. New method for graded mesh generation of all quadrilateral finite element [J]. Computers and Structures, 1996, 59(5): 823-829.
  • 10Li Hua, Cheng Gen4gdong. New method for graded mesh generation of all hexahedral finite elements [J]. Computers and Structures, 2000, 76(6): 729-740.

共引文献12

同被引文献97

引证文献8

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部