期刊文献+

基于数据流模糊聚类挖掘的入侵检测系统研究

Intrusion Detection System Based on Fuzzy Clustering Mining of Date Stream
下载PDF
导出
摘要 传统的基于数据挖掘入侵检测技术往往是基于静态数据的检测,随着网络速度的提高和网络流量的剧增,网络数据通常以数据流的形式出现。提出了一种作用于数据流的模糊聚类挖掘算法(SFCM),并且针对该算法提出了一种基于数据流模糊聚类的入侵检测系统,实验结果显示,该方法有较高的检测率和较低的漏报率和误报率。 Detection technologies based on data mining are often based on static data test. With the increase of network speed and traffic, the network data usually appear in the form of data flow. A fuzzy clustering mining of data stream( SFCM) algorithm which acts on data flow is proposed, and an intrusion detection system based on fuzzy clustering mining of data stream is proposed based on this algorithm. The experimental results show that this method has a high detection rate and low false negative rate and false positive rate.
出处 《现代防御技术》 北大核心 2013年第2期207-211,共5页 Modern Defence Technology
关键词 数据流挖掘 聚类算法 基于数据流的模糊聚类挖掘算法(SFCM) 入侵检测 data stream mining clustering algorithm fuzzy clustering mining of data stream (SF- CM) intrusion detection
  • 相关文献

参考文献9

  • 1丁有军.基于数据挖掘的入侵检测研究与应用[J].西安电子科技大学学报,2005,25(13):256.
  • 2CANNON R L, DAVE J V, BEZDEK J C. Efficient Im- plementation of the Fuzzy C-Means Clustering Algorithms [ J]. IEEE Trans on Pattern Anal Machine Intelligence, 1986,8 ( 2 ) : 248 -255.
  • 3Anany Levitin.算法设计分析基础[M].北京:清华大学出版社,2007:113-115.
  • 4朱林,王士同,邓赵红.改进模糊划分的FCM聚类算法的一般化研究[J].计算机研究与发展,2009,46(5):814-822. 被引量:55
  • 5WU S H, LIEW A W, HONG Y. Cluster Analysis of Gene Expression Data Based on Self-Splitting and Mer- ging Competitive Learning[ J]. IEEE Transactions on In- formation Technology in Biomedicine, 2004,8 ( 1 ) :5 - 14.
  • 6O' Callaghan L, MISHRA N, MEYERSON A, et al. Streaming Data Algorithms for High-Quality Clustering [C]//Proc of the 18th Int' l Conf on Data Engineering, San Jose ,2002:685 -694.
  • 7FAN Jiu-lun, ZHEN Wen-zhi, XIE Wei-xin. Sup- pressed Fuzzy C-Means Clustering Algorithm [ J ]. Pat- tern Recognition Letters, 2003,24 : 1607 - 1612.
  • 8James C Bezdek. Pattern Recognition with Fuzzy Objec- tive Function Algorithms [ M ]. New York: Plenum, 1981:128-132.
  • 9杨德刚.基于模糊C均值聚类的网络入侵检测算法[J].计算机科学,2005,32(1):86-87. 被引量:26

二级参考文献21

  • 1修宇,王士同,吴锡生,胡德文.方向相似性聚类方法DSCM[J].计算机研究与发展,2006,43(8):1425-1431. 被引量:21
  • 2Hoppner F, Klawonn F. Improved fuzzy partitions for fuzzy regression models [J]. Journal of Approximate Reasoning, 2003, 32(2): 85-102
  • 3Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms [M]. New York: Plenum, 1081
  • 4Bezdek J C, Hathaway R J, Sahin M J, et al. Convergence theory for fuzzy c-means: Counterexamples and repairs [J]. IEEE Trans on SMC, 1987, 17(5): 873-877
  • 5Zhang Y J, Liu Z Q. Self-splitting competitive learning: A new on-line clustering paradigm [J]. IEEE Trans on Neural Network, 2002, 13(2) : 369-380
  • 6Wu S H, Liew A W, Hong Y, et al. Cluster analysis of gene expression data based on self-splitting and merging competitive learning [J]. IEEE Trans on Information Technology in Biomedicine, 2004, 8 (1) : 5-15
  • 7Xu L, Krzyak A, Oja E. Rival penalized competitive learning for clustering analysis, RBF net and curve detection [J]. IEEE Trans on Neural Network, 1993, 4(4): 636-649
  • 8Blake C L, Merz C J. UCI repository of machine learning databases [D]. Irvine, CA: University of California, Department of Information and Computer Science, 1998
  • 9Yeung K Y, Medvedovie M, Bumgarner R. Clustering gene expression data with repeated measurements [J]. Genome Biology, 2003, 4(5): R34
  • 10Chung F L, Wang S T, et al. Clustering analysis of gene expression data based on semi-supervised clustering algorithm [J]. Soft Computing, 2006, 1(11): 981-994

共引文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部