期刊文献+

火星探测接近段的光学自主导航研究 被引量:9

Research on Optical Autonomous Navigation for Approach Phase of Mars Exploration
下载PDF
导出
摘要 目前光学自主导航技术已成为深空探测计划中的重点研究对象.已有研究多侧重于光学自主导航技术在深空探测巡航段或是对小行星探测接近段中的应用,而关于大行星探测接近段光学自主导航技术的研究比较少.结合中国即将开展的火星探测计划,研究了探测器在火星探测接近段中利用火星进行光学自主导航的整个过程,提出了适用于接近段的动力学模型、光学观测模型及自主导航滤波算法.通过对自主导航系统的可观测性分析,证明了仅利用火星光学信息进行自主导航的可行性.仿真计算结果表明,在接近段,整个光学自主导航的持续时间约为40 h.在自主导航的最后5 h内,滤波结果稳定,探测器的总体位置误差在40 km以内,速度误差在0.25 m·s^(-1)以内.计算结果的精度满足实际任务需求,对中国火星探测计划具有直接的参考价值. The optical autonomous navigation has recently become one of the key topics in inter- planetary space missions. According to the current research literature, most people only focused on the application of optical autonomous navigation for the cruise phase or the approach phase of asteroids exploration. The research for the approach phase of planets is rare. Based on the upcoming Mars exploration program of China, with the research of dynamics model, observation madel and filtering algorithm, the process of the optical autonomous navigation during the Mars approach phase is studied. Through the observability analysis of the navigation system, the feasibility of using Mars optical information only for autonomous navigation is proved. Simulation result showed that the total time of the optical autonomous navigation for approach phase is about 40 hours. In the last 5 hours, the filtering results are becoming stable. The overall position error is less than 40 km, and the velocity error is 0.25 m-s-1. The stability and accuracy of the results can meet the requirement of actual task, and is referencable for Chinese Mars exploration program.
出处 《空间科学学报》 CAS CSCD 北大核心 2013年第3期313-319,共7页 Chinese Journal of Space Science
基金 国家重点基础研究发展计划项目(2012CB720000) 国家自然科学基金项目(11072122)共同资助
关键词 火星探测 接近段 光学自主导航 扩展卡尔曼滤波 Mars exploration, Approach phase, Optical autonomous navigation, EKF
  • 相关文献

参考文献11

  • 1韩鸿硕,陈杰.21世纪国外深空探测发展计划及进展[J].航天器工程,2008,17(3):1-22. 被引量:35
  • 2柴霖,许秀玲.深空测控体系结构与技术发展[J].电讯技术,2010,50(8):1-6. 被引量:15
  • 3王大轶,黄翔宇.深空探测自主导航与控制技术综述[J].空间控制技术与应用,2009,35(3):6-12. 被引量:37
  • 4Riedel J E, Bhaskaran S, Desai S, et al. Deep Space 1 Technology Validation Report-Autonomous Optical Nay- igation [C]. Pasadena CA: JPL Publication, 2000.
  • 5Bhaskaran S, Desai S D, Dumont P J, et al. Orbit deter- mination performance evaluation of the Deep Space i au- tonomous navigation system [C]. Monterey: AIAA/AAS Space Flight Mechanics Meeting, 1998.
  • 6Bhaskaran S, Riedel J E, Synnott S P. Autonomous nu- cleus tracking for comet/asteroid encounters: The STAR- DUST example[C]//IEEE Aerospace Conference Pro- ceedings. Aspen: IEEE, 1998. 353-365.
  • 7Mastrodemos N, Kubitschek tonomous navigation for the counter with comet Tempel 1 117(I/2):95-121 D G, Synnott S P. Au- Deep Impact mission en- [J]. Space Sci. Rev., 2005,.
  • 8Hawkins S E, Murchie S L, Becker K J, et al. In-flight performance of MESSENGER mercury dual imaging sys- tern [J]. Proc. SPIE, 2009, 7441, 74410Z:1-12.
  • 9Guo Y. Self-contained autonomous navigation system for deep space mission[C]//AAS/AIAA Space Flight Me- chanics Meeting, AAS-99-177. Breckenridge, CO: Ameri- can Astronomical Society, 1999.
  • 10Long A C, Cappellari J O, Velez C E, Fuchs A J. God- dard Trajectory Determination System (GTDS) Mathe- matical Theory Revision l[M]. Lanham-Seabrook, Mary- land: Computer Science Corporation, 1989.

二级参考文献19

共引文献80

同被引文献115

引证文献9

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部