期刊文献+

基于统计与词汇语义特征的中文文本蕴涵识别 被引量:4

Chinese textual entailment recognition using statistical and lexical semantic features
下载PDF
导出
摘要 对中文这种意合型语言而言,为了进行文本内容理解和文本语义推理,必须识别文本间的蕴涵关系。针对中文文本,在文本预处理的基础上,提取中文文本的相关统计特征和词汇语义特征;基于获取的统计与词汇语义特征,使用支持向量机设计并实现分类器对中文文本对间蕴涵关系进行分类。实验结果表明,基于统计与词汇语义特征进行中文文本蕴涵关系识别是可行的。 In order to further analyze and understand the text, textual entailment recognition should be paid more attention to, especially the ones in Chinese text pair. The statistical and lexical semantic features, associated with Chinese text pair, are extracted after the Chinese text preprocessing, such as Chinese word segmentation and stop words removal. The textual entail- ment recognition is actually one classification task and the classification model based on support vector machine can he designed and implemented using the extracted statistical and lexical semantic features. The experimental results demonstrate the effectiveness and feasibility of the classification model using the textual statistical and semantic features.
出处 《计算机工程与设计》 CSCD 北大核心 2013年第5期1777-1782,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(61100133 61173062) 国家社会科学基金重大项目(11&Z189) 湖北省教育厅人文社科基金重点项目(2011jyte126)
关键词 文本蕴涵 统计特征 词汇语义特征 支持向量机 矛盾 textual entailment statistical feature lexical semantic feature support vector machine contradiction
  • 相关文献

参考文献11

  • 1Dagan I,Dolan B,Magnini B,et al.Recognizing textualentailment :Rational,evaluation and approaches [J].NaturalLanguage Engineering,2009,15(4) :1-17.
  • 2Iftene A,Balahur-Dobrescu A.Hypothesis transformation andsemantic variability rules used in recognizing textual entailment[C] //Prague,Czech Republic:Proceedings of the ACL-PAS-CAL Workshop on Textual Entailment and Paraphrasing,2007:125-130.
  • 3Androutsopoulos I,Malakasiotis P.A survey of paraphrasingand textual entailment methods [J],Journal of Artificial Intel-ligence Research,2010,38(2) :135-187.
  • 4Duboue P A,Chu-Carroll J.Answering the question you wishthey had asked:The impact of paraphrasing for questionanswering [ C] //Proceedings of the HLT Conference ofNAACL,2006:33-36.
  • 5Nielsen R,Ward W,Martin J.Recognizing entailment inintelligent tutoring systems [J].Natural Language Enginee-ring,2009,15(4):479-501.
  • 6袁毓林,王明华.文本蕴涵的推理模型与识别模型[J].中文信息学报,2010,24(2):3-13. 被引量:17
  • 7Shima H,Kanayama H,Lee OW,et al.Overview of ntcir-9rite:Recognizing inference in text [C] //Tokyo; Proceedingsof NTCIR-9 Workshop Meeting,2011:291-301.
  • 8ZanzottoF M,Pennacchiotti M,Moschitti A.A machine-learning approach to textual entailment recognition [J].Natu-ral Language Engineering,2009,15(4) :551-582.
  • 9Malakasiotis P.Paraphrase recc^nition using machine learning to com-bine similarity measures [C] //Singapore:Proceedings of the 47thAnnual Meeting of ACL and the 4 th International Joint Confe-rence onNatural Language Processing of AFNLP,2009:27-35.
  • 10田久乐,赵蔚.基于同义词词林的词语相似度计算方法[J].吉林大学学报(信息科学版),2010,28(6):602-608. 被引量:178

二级参考文献27

  • 1余刚,裴仰军,朱征宇,陈华月.基于词汇语义计算的文本相似度研究[J].计算机工程与设计,2006,27(2):241-244. 被引量:25
  • 2程涛,施水才,王霞,吕学强.基于同义词词林的中文文本主题词提取[J].广西师范大学学报(自然科学版),2007,25(2):145-148. 被引量:11
  • 3关毅,王晓龙.基于统计的汉语词汇间语义相似度计算[C]//全国第七届计算语言学联合学术会议论文集,哈尔滨,2003:221-227.
  • 4Akhmatova, Elena. Textual Entailment Resolution via Atomic Proposition[C]//Proceedings of the PASCAL Challenges Workshop on Recognising Textual Entailment. 2005.
  • 5Andreevskaia, Alina, Zhuoyan Li and Sabine Berger. Can Shallow Predicate Argument Structure Determine Entailment? [C]//Proceedings of the PASCAL Challenges Workshop on Recognising Textual Entailment. 2005 :.
  • 6Bar-Haim, Roy, Idan Szpektor and Oren Gliekman. Definition and Analysis of Intermediate Entailment Levels[C]//Proceeding of the ACL Workshop on Em pirical Modeling of Semantic Equivalence and Entailment. 2005:55-60.
  • 7Barzilay, Regina and Kathleen McKeown (2001) Extracting Paraphrases from a Parallel Corpus[C]// ACL/EACL. 2001 : 50-57.
  • 8Barzilay, Regina and Lillian Lee. Learning to Paraphrase: An Unsupervised Approach Using Multiple- Sequence Alignment[C]//Proceeding of the NAACLHLT. 2003: 16-23.
  • 9Bos, Johan and Katja Markert. Combining Shallow and Deep NLP Methods for Recognizing Textual En tailment[C]//Proceedings of the PASCAL Challenges Workshop on Recognising Textual Entailment. 2005.
  • 10Dagan, Ido and Oren Glickman. Probabilistic Textual Entailment: Generic Applied Modeling of Language Variability[C]//PASAL workshop on Learning Meth ods for Text Understanding and Mining, Grenoble France. 2004.

共引文献191

同被引文献26

  • 1范晓.关于汉语的语序问题(一)[J].汉语学习,2001(5):1-12. 被引量:59
  • 2单丽莉,刘秉权,孙承杰.文本分类中特征选择方法的比较与改进[J].哈尔滨工业大学学报,2011,43(S1):319-324. 被引量:25
  • 3许建潮,胡明.中文Web文本的特征获取与分类[J].计算机工程,2005,31(8):24-25. 被引量:24
  • 4石晶,戴国忠.基于知网的文本推理[J].中文信息学报,2006,20(1):76-84. 被引量:8
  • 5熊忠阳,张鹏招,张玉芳.基于χ~2统计的文本分类特征选择方法的研究[J].计算机应用,2008,28(2):513-514. 被引量:44
  • 6Dagan I,Dolan B,Magnini B,et al. Recognizing textual entailment: Rational,evaluation and approaches-erratum[J]. Natural Language Engineering,2010,16(1): 105.
  • 7Zesch T,Levy O,Gurevych I,et al. UKP-BIU: Similarity and Entailment Metrics for Student Response Analysis[J]. Atlanta,Georgia,USA,2013: 285.
  • 8Jimenez S,Becerra C,Gelbukh A,et al. SOFTCARDINALITY: Hierarchical Text Overlap for Student Response Analysis[J]. Atlanta,Georgia,USA,2013: 280.
  • 9Guo W,Diab M. Modeling sentences in the latent space[C] //Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers-Volume 1. Association for Computational Linguistics,2012: 864-872.
  • 10Guo W,Diab M. A simple unsupervised latent semantics based approach for sentence similarity[C] //Proceedings of the First Joint Conference on Lexical and Computational Semantics-Volume 1: Proceedings of the main conference and the shared task,and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation. Association for Computational Linguistics,2012: 586-590.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部