期刊文献+

局部投影可分离的高光谱图像异常检测 被引量:3

Anomaly detection method based on separable local projection in hyperspectral imagery
原文传递
导出
摘要 针对高光谱异常检测中临近异常像素相互干扰和背景地物复杂的问题,提出基于局部投影可分离的高光谱图像异常检测算法。在归一化的数据中,将待测像素光谱作为参考光谱,构造目标子空间,然后把邻域背景像素投影到该子空间,用投影后向量模值构造异常度计算式。最后将检测到的异常与全局主要背景地物进行比对,消除部分虚警。利用HyMap高光谱数据进行仿真实验结果表明,本文算法具有克服背景复杂性和干扰点的影响,尤其对异类干扰点的抑制效果更佳。 Aiming at the interference of close outliers and the complexity of background features, a new anomaly detection method based on separable local projection in hyperspectral imagery is proposed. After normalizing the data, the test pixel spectrum is selected as the reference spectrum to build the target subspace. Then, the background pixels in close areas are projected onto this subspace and the formula of the abnormal degree is acquired through the modulus of the projection vec- tors. Finally, comparing the anomalies with the main surface features, parts of the false alarms are eliminated. The experi- ments were conducted on HyMap hyperspectral data and the results show that the proposed algorithm overcomes the impact of background complexity and interference pixeis, especially in situations where the interference pixels and test pixel are in different classes.
机构地区 装备学院
出处 《中国图象图形学报》 CSCD 北大核心 2013年第5期558-564,共7页 Journal of Image and Graphics
关键词 高光谱图像 异常检测 局部投影 归一化处理 hyperspectral images anomaly detection local projection normalized process
  • 相关文献

参考文献9

  • 1Reed I S, Yu X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution [J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990, 38(10): 1760-1770. [DOI: 10.1109/ 29.60107].
  • 2Harsanyi J C, Chang C I. Hyperspectral image classification and dimensionality reduction: an orthogonalsubspace projection approach [J].IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4): 779-785. [DOI: 10.1109/ 36.298007].
  • 3Banerjee A, Burlina P, Diehl C. A support vector method for anomaly detection in hyperspectral imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): 2282-2291. [DOI: 10.1109/ TGRS.2006.873019].
  • 4Chang C I. Least squares subspace projection approach to mixed pixel classification for hyperspectral images [J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 898-912. [DOI: 10.1109/ 36.673681].
  • 5Chang C I. Orthogonal subspace projection (OSP)revisited: a comprehensive study and analysis [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 502-518. [DOI: 10.1109/ TGRS.2004.839543].
  • 6Dobigeon N. Joint bayesian endmember extraction and linear unmixing for hyperspectral imagery [J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4355-4368. [DOI: 10.1109/ TSP.2009.2025797].
  • 7Chang C I. A fast iterative algorithm for implementation of pixel purity index [J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1): 63-67. [DOI: 10.1109/ LGRS.2005.856701].
  • 8许卫东,尹球,匡定波.地物光谱匹配模型比较研究[J].红外与毫米波学报,2005,24(4):296-300. 被引量:53
  • 9Chang C I, Chiang S S. Anomaly detection and classification for hyperspectral imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(6): 1314-1325. [DOI: 10.1109/ TGRS.2002.800280].

二级参考文献7

  • 1尹球,疏小舟,徐兆安,匡定波.湖泊水环境指标的超光谱响应特征分析[J].红外与毫米波学报,2004,23(6):427-430. 被引量:32
  • 2Kruse F A, Lefkoff A B, Boardman J W, et al. The spectral image processing system (SIPS)-software for integrated analysis of AVIRIS data [ C]. Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Pasadena: JPL Pub,1992, 23-25.
  • 3Carvalho Jr O A, Meneses P R. Spectral correlation mapper(SCM):An improving spectral angle mapper [ C ]. In:Ninth JPL Airborne Earth Science Workshop. Pasadena: JPL Publication, 2000, 65-74.
  • 4Osmar, Ana Paula, Paulo Roberto, et al. Spectral identification method (Sim) : A new classifier based on the anova and spectral correlation mapper (SCM) methods [ C ]. Pasadena: JPL Publication, 2001.
  • 5Clark R N, Swayze G A. Mapping minerals, amorphous materials, environmental materials, vegetation, water, ice and snow, and other materials: The USGS tricorder algorithm[ C]. In:Summaries of the Fifth JPL Airborne Earth Science Workshop. Pasadena : JPL Publication, 1995.39-40.
  • 6王晋年,张兵,刘建贵,童庆禧,郑兰芬.以地物识别和分类为目标的高光谱数据挖掘[J].中国图象图形学报(A辑),1999,4(11):957-964. 被引量:57
  • 7刘堂友,匡定波,尹球.湖泊藻类叶绿素-a和悬浮物浓度的高光谱定量遥感模型研究[J].红外与毫米波学报,2004,23(1):11-15. 被引量:70

共引文献52

同被引文献19

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部