摘要
设n为正整数,称T为*-n-仿正规算子,若||T^(1+n)x||^(1/(1+n))≥||T~*x||对H中的每个单位向量x都成立;称T为*-n-仿正规算子,若||T^(1+i)x||^(1/(1+i))≥||T~*x||对H中的每个单位向量x及i≥n都成立.若对任意λ∈C,T-λ都是*-n-仿正规算子,则称T为完全*-n-仿正规算子.若T是*-n-仿正规算子,它的近似点谱和联合近似点谱是相等的.另外证明了若T或者T~*是完全*-n-仿正规算子,则Weyl定理对f(T)成立,其中f∈H(σ(T)),还证明了若T~*是完全*-n-仿正规算子,则α-Weyl定理对.f(T)成立.
Let n be a positive integer. An operator T belongs to class *-n-paranormal if ||T^(1+n)x||(1/(1+n))≥||T^*x|| for unit vector x. An operator T ∈ B(H) is said to be *-n-paranormal if ||T^(1+i)x||^(1/(1+i))≥||T^*x|| for unit vector x and i 〉 n. An operator T ∈ B(H) is said to be totally *-n-paranormal, if T - λ is *-n-paranormal for every λ∈C. It is showed that if T belongs to class *-n-paranormal operators, then its approximate point spectrum and joint approximate point spectrum are identical. We also prove that if either T or T^* is totally *-n-paranormal, then Weyl's theorem holds for f(T) for every f f∈H(σ(T)), and also α-Weyl's theorem holds for f(T) if T^* is totally *-n-paranormal.
出处
《数学进展》
CSCD
北大核心
2013年第2期153-158,共6页
Advances in Mathematics(China)
基金
supported by the Natural Science Foundation of the Department of Education, Henan Province(No.12B110025,No.102300410012)