摘要
首先引入迹分解秩的概念,具有这个结构的稳定有限的顺从C^*-代数非常多.这个概念和Elliott的用K-理论来分类顺从C~*-代数的分类计划有重要的联系.然后研究C^*-代数扩张.设0→I→A-→A/I→0是C^*-代数的一个短正合序列,其中A有单位元.假设I有分解秩k,A/I有迹分解秩k,那么如果扩张是拟对角的,本文将证明A的迹分解秩不超过k.
We introduce the notion of tracial decomposition rank, a structural property shared by many stably finite nuclear C^*-algebras. The concept is particularly relevant for Elliott's program to classify nuclear C^*-algebras by K-theory data. We study the extension of C^*-algebras. Let 0→I→A-→A/I→0 be a short exact sequence of C^*-algebras with A unital. Suppose that I has decomposition rank k and A/I has tracial decomposition rank k. It will be proved that A has tracial decomposition rank no more than k if the extension is quasidiagonal.
出处
《数学进展》
CSCD
北大核心
2013年第2期219-226,共8页
Advances in Mathematics(China)
基金
supported by NSFC(No.10771069,No.10771161 and No.11071188)
Zhejiang Provincial Natural Science Foundation of China(No.LQ12A01015)
关键词
扩张
迹分解秩
分类
extension
tracial decomposition rank
classification