期刊文献+

超空间上k-正则函数及其相关函数的性质 被引量:1

Properties of k-monogenic Functions and Their Relative Functions in Superspace
原文传递
导出
摘要 本文首先给出了超空间上高阶Cauchy-Pompeiu公式,然后由超空间上微分算子之间的缠绕关系,分别讨论了正则函数和k-正则函数及调和函数和k-调和函数之间的关系.最后,得到超空间上Cauchy-Riemann型方程. In the paper, first we show the higher order Cauchy-Pompeiu formula in superspace. Second we discuss the relationship between monogenic functions and k-monogenic functions by the relation among differential operators. Similarly, the relationship between harmonic functions and k-harmonic functions is obtained. Finally we get the Cauchy-Riemann type equations in superspace.
出处 《数学进展》 CSCD 北大核心 2013年第2期233-242,共10页 Advances in Mathematics(China)
基金 国家自然科学基金资助项目(No.10771049)
关键词 超空间 超Dirac算子 超Laplace算子 K-正则函数 k-调和函数 superspace super Dirac operator super Laplace operator k-monogenic function k-harmonic function
  • 相关文献

参考文献14

  • 1Clifford, W.K., Applications of Grassmann's extensive algebra, Amer. J. Math., 1878, 1: 350-358.
  • 2Brackx, F., Delanghe, R.' and Sommen, F., Clifford Analysis, In: Research Notes in Mathematics, Vol. 76, London: Pitman, 1982.
  • 3Huang S., Qiao Y.. and Wen G.C., Real and Complex Clifford Analysis, New York: Springer, 2005.
  • 4Berezin, F.A., The Method of Second Quantization, Pure and Applied Physics, Vol. 24, New York: Academic Press, 1966.
  • 5Berezin, F.A., Introduction to Algebra and Analysis With Anticommuting Variables, Moscow: Moskov. Gos. Univ., 1983.
  • 6Kostant, B., Graded manifolds, graded Lie theory, and prequantization, In: Proceedings of the Conference on Differential Geometrical Methods in Mathematical Physics, University of Bonn, 1975, Lecture Notes in Mathematics, Vol. 570, Berlin: Springer, 1977, 177-306.
  • 7Leites, D.A., Introduction to the theory of supermanifolds, Uspekhi Mat. Nauk, 1980, 35: 3-57.
  • 8Batchelor, M., Two approaches to supermanifolds, Trans. Amer. Math. Soc., 1980, 258(1): 257-270.
  • 9De Bie, H. and Sommen, F., Correct rules for Clifford calculus on superspace, Adv. Appl. Clifford Alg., 2007, 17: 357-382.
  • 10De Bie, H. and Sommen, F., Fundamental solutions for the super Laplace and Dirac operators and all their natural powers, J. Math. Anal. Appl., 2008, 338(2): 1320-1328.

二级参考文献8

共引文献8

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部