期刊文献+

Multi-channel DFB laser array fabricated by SAG with optimized epitaxy conditions

Multi-channel DFB laser array fabricated by SAG with optimized epitaxy conditions
原文传递
导出
摘要 Selective area growth (SAG) is performed to fabricate monolithically integrated distributed feedback (DFB) laser array by adjusting the width of a SiO2 mask. A strain-compensated-barrier structure is adopted to reduce the accumulated strain and improve the quality of multi-quantum well materials. Varying the strip width of the SAG masks, the DFB laser array with an average channel spacing of 1.47 nm is demonstrated by a conventional holographic method with constant-pitch grating. The threshold current from 14 to 18 mA and over 35-dB side mode suppression ratio (SMSR) are obtained for all DFB lasers in the array. Selective area growth (SAG) is performed to fabricate monolithically integrated distributed feedback (DFB) laser array by adjusting the width of a SiO2 mask. A strain-compensated-barrier structure is adopted to reduce the accumulated strain and improve the quality of multi-quantum well materials. Varying the strip width of the SAG masks, the DFB laser array with an average channel spacing of 1.47 nm is demonstrated by a conventional holographic method with constant-pitch grating. The threshold current from 14 to 18 mA and over 35-dB side mode suppression ratio (SMSR) are obtained for all DFB lasers in the array.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2013年第4期22-25,共4页 中国光学快报(英文版)
基金 supported by the National "863" Projectof China (Nos.2011AA010303 and 2012AA012203) the National Natural Science Foundation of China (Nos.61021003 and 61090392) the National "973" Program of China (No.2011CB301702)
关键词 Monolithic integrated circuits Monolithic integrated circuits
  • 相关文献

参考文献21

  • 1Y. Suzaki, H. Yasaka, H. Mawatari, K. Yoshino, Y. Kawaguchi, S. Oku, R. Iga, and H. Okamoto, IEEE J. Sel. Top. Quantum Electron. 11, 43 (2005).
  • 2R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kato, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, R. H. Miles, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, S. C. Pennypacker, J. L. Pleumeekers, R. A. Salvatore, R. K. Schlenker, R. B. Taylor, T. Huan-Shang, M. F. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffie, D. G. Mehuys, F. A. Kish, and D. F. Welch, IEEE J. Sel. Top. Quantum Electron. 11, 50 (2005).
  • 3D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W .. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffie, and D. G. Mehuys, IEEE J. Sel. Top. Quantum Electron. 13, 22 (2007).
  • 4S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, 1. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, R. Muthiah, R. Salvatore, S. Murthy, E. Strzelecka, J. L. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. H. Joyner, F. Kish, and D. F. Welch, IEEE Photon. Technol. Lett. 22, 1015 (2010).
  • 5T. Fujisawa, S. Kanazawa, K. Takahata, W. Kobayashi, T. Tadokoro, H. Ishii, and F. Kano, Opt. Express 20, 614 (2012).
  • 6H. Ishii, K. Kasaya, and H. Oohashi, IEEE J. Sel. Top. Quantum Electron. 15, 514 (2009).
  • 7S. Sakamoto, T. Okamoto, T. Yamazaki, S. Tamura, and S. Arai, IEEE J. Sel. Top. Quantum Electron. 11, 1174 (2005).
  • 8L. P. Hou, M. Haji, J. Akbar, J. H. Marsh, and A. C. Bryce, Opt. Lett. 36, 4188 (2011).
  • 9G. P. Li, T. Makino, A. Sarangan, and W. Huang, IEEE Photon. Technol. Lett. 8, 22 (1996).
  • 10Y. Shi, X. Chen, Y. Zhou, S. Li, L. Lu, R. Liu, and Y. Feng, Opt. Lett. 37, 3315 (2012).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部