期刊文献+

Residual stress near cracks of K9 glass under 1 064-nm nanosecond laser irradiation

Residual stress near cracks of K9 glass under 1 064-nm nanosecond laser irradiation
原文传递
导出
摘要 We present the birefringence measurements induced in K9 specimen by cracks produced by 1 064-nm Nd:YAG laser. The birefringence data are converted into units of stress, permitting the estimation of residual stress near cracks. The laser parameters and characterization of the optical material influence the value of residual stress. Residual stress in optical materials can affect fracture; thus, this factor should be considered in any formulation that involves enhanced damage resistance of optical components used in laser-induced damage experiments. The probability of the initial damage and the direction of the energy dissipation in cracks determine the residual stress distribution. Moreover, thermal-stress coupling enlarges the asymmetry of residual stress distribution. Therefore, the physical mechanism of asymmetric damage is useful for understanding the nature of optical materials under high-power laser irradiation. We present the birefringence measurements induced in K9 specimen by cracks produced by 1 064-nm Nd:YAG laser. The birefringence data are converted into units of stress, permitting the estimation of residual stress near cracks. The laser parameters and characterization of the optical material influence the value of residual stress. Residual stress in optical materials can affect fracture; thus, this factor should be considered in any formulation that involves enhanced damage resistance of optical components used in laser-induced damage experiments. The probability of the initial damage and the direction of the energy dissipation in cracks determine the residual stress distribution. Moreover, thermal-stress coupling enlarges the asymmetry of residual stress distribution. Therefore, the physical mechanism of asymmetric damage is useful for understanding the nature of optical materials under high-power laser irradiation.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2013年第4期26-29,共4页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China(No.61078075) the Development Foundation of Science and Technology for China Academy of Engineering Physics(Nos.2010B0401055 and 2011B0401065)
关键词 BIREFRINGENCE Cracks Energy dissipation Laser beam effects Optical materials Optical systems Residual stresses Stress concentration Birefringence Cracks Energy dissipation Laser beam effects Optical materials Optical systems Residual stresses Stress concentration
  • 相关文献

参考文献18

  • 1K. B. Aime, C. Belin, L. Gallais, P. Grua, E. Fargin, J. Neauport, and I. Toven-Pecault, Opt. Express 17, 18703 (2009).
  • 2C. Giuri, M. R. Perrone, and V. Piccinno, Appl. Opt. 36, 1143 (1997).
  • 3Y. Xu, L. Zhang, D. Wu, Y. Sun, Z. Huang, X. Jiang, X. Wei, Z. Li, B. Dong, and Z. Wu, J. Opt. Soc. Am. B 22, 905 (2005).
  • 4D. Zhang, C. Wang, P. Fan, X. Cai, Z. Zheng, J. Shao, and Z. Fan, Opt. Express 17, 8246 (2009).
  • 5R. A. Negres, Z. M. Liao, G. M. Abdulla, D. A. Cross, M. A. Norton, and C. W. Carr, Appl. Opt. 50, D12 (2011).
  • 6F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. Papernov, and S. J. Burns, Appl. Opt. 38, 6892 (1999).
  • 7L. Gallais, P. Cormont, and J. L. RuUier, Opt. Express 17, 23488 (2009).
  • 8Y. Z. Li, M. P. Harmer, and Y. T. Chou, J. Mater. Res. 9, 1780 (1994).
  • 9D. Albagli, M. Dark, L. T. Perelman, C. von Rosenberg, I. Irzkan, and M. S. Feld, Opt. Lett. 19, 1684 (1994).
  • 10J. E. Logan, N. A. Robertson, and J. Hough, Opt. Commun. 107, 342 (1994).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部