期刊文献+

线粒体融合分裂与运动能量代谢 被引量:2

下载PDF
导出
摘要 线粒体是动态的细胞器,在细胞的不同生命过程中以及外界环境刺激下,它的数量和形态都是可变的。线粒体频繁的融合与分裂,此消彼长,保持在一个动态的平衡之中。线粒体融合与分裂过程中必须保证膜结构的完整性,以防止膜间隙分子漏出,导致细胞凋亡。线粒体形态与结构动态性及其与细胞生理病理关系的研究就成为当前细胞生命科学中的一大热点。
出处 《中国急救复苏与灾害医学杂志》 2013年第4期358-360,共3页 China Journal of Emergency Resuscitation and Disaster Medicine
基金 武警后勤学院面上项目(WY2009-17)
  • 相关文献

参考文献28

  • 1Ong SB and Hausenloy DJ. Mitochondiial morphology and cardiovascular disease. Cardiovasc Res, 2010, 88 (1): 16-29.
  • 2Makino A, Suarez J, Gawlowski T, et al. Regulation of mitochondrial morphology and function by O-GlcNAeylation in neonatal cardiac myoeytes. Am J Physiol Regulatory Integrative Comp Physiol, 2011,300: 1296-1302.
  • 3Chan DC. Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol, 2006, 22: 79-99.
  • 4Margineantu DH, Cox WG, Sundell L, et al. Cell cycle dependent morphology changes and associated mitochondrial DNA redistribution in mitochondria of human cell lines. Mitochondrion. 2002, 1: 425-435.
  • 5Karbowski M and Youle RJ. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death and Differentiation. 2003, 10: 870-880.
  • 6Fritz S, Rapaport D, Klanner E, et al. Connection of the mitoehondfial outer and inner membranes by Fzol is critical for organellar fusion. J Cell Biol. 2001, i52: 683-692.
  • 7Koshiba T, Detmer SA, Kaiser JT, et al. Structural basis of mitochondrial tethering by mitofusin complexes. Science. 2004, 305: 858-862.
  • 8Santel A, Frank S, Gaume B, et al., Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J Cell Sci, 2003. 116(Pt 13): 2763-2774.
  • 9Rojo M, Legros F, Chateau D, et al. Membrane topology and mitochondrial targeting of mitofuslns, ubiquitous mammalian homaloSs of the transmembrane GTPase Fzo. J Cell Sci. 2002, 115: 1663-1674.
  • 10Bach D, Pieh S, Soriano FX, et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem, 2003, 278(19): 17190-17197.

二级参考文献47

  • 1张桦,焦选茂,刘树森,王孝铭.缺血/再灌注对大鼠心肌线粒体电子传递与质子泵出偶联的影响[J].中国病理生理杂志,1993,9(5):561-564. 被引量:26
  • 2刘树森,焦选茂,王孝铭,张力.线粒体呼吸链电子漏与质子漏的相互作用——电子漏引起质子漏[J].中国科学(B辑),1995,25(6):596-603. 被引量:17
  • 3刘树森 魏影允.鼠肝线粒体内膜H-ATP酶ATP合成反应动力学[J].Acta Biochinica et Biophysica Sinica(生物化学与生物物理学报:英文版),1987,19(3):241-251.
  • 4Haekenbrock CR. Ultrastructural bases for metabolically linked mechanical activity in mitochondria.Ⅱ. Electron transport-linked ultrastructural transformations in mitochondria. J CellBiol, 1968, 37(2) :345--369.
  • 5Meeusen S, McCaffery JM and Nunnari J. Mitochondrial fusion intermediates revealed in vitro. Science, 2004, 305 (5691) :1747--1752.
  • 6Rossignol R, Gilkerson R, Aggeler R, et al. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Caneer Res, 2004,64 (3) : 985 - 993.
  • 7Koopman WJ, Visch HJ, Verkaart S, et al. Mitochondrial network complexity and pathological decrease in complex Ⅰ activity are tightly correlated in isolated human complex I deficiency. Am J Physiol Cell Physiol, 2005, 289(4) : C881--C890.
  • 8Pich S, Bach D, Briones P, et al. The Charcot-Marie- Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. Hum Mol Genet, 2005,14(11):1405--1415.
  • 9Pletjushkina OY, Lyamzaev KG, Popova EN, et al. Effect of oxidative stress on dynamics of mitochondrial reticulum. Biochim Biophys Acta, 2006,1757(5-6):518-- 524.
  • 10Benard G, Bellanee NE, James D, et al. Mitoehondrial bioenergeties and structural network organization. J Cell Sei, 2007, 120(5) :838--848.

共引文献22

同被引文献16

  • 1翁锡全,林洁如,林文韬,黄丽英,王仁纲,吴桂贤.低氧暴露对运动性贫血大鼠抗氧化能力的影响[J].中国组织工程研究与临床康复,2007,11(17):3357-3360. 被引量:7
  • 2Bo I-I, Zhang Y, Ji LL. Redefining the role of mitochondria in exercise: a dynamic remodeling.Ann N Y Acad Sei, 2010, 1201(1): 121-128.
  • 3Mignot CC, Pirettin D, Famir F, et al. Effect of strenuous exercise and ex vivo TLR3 and TLR4 stimulation on inflammatory gene expression in equine pulmonary leukocytes.Vet Immunol Immunopathol,2012,147(3-4): 127-135.
  • 4He C, Bassik MC, Moresi V, et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis.Nature, 2012, 481 (7382): 511-515.
  • 5Kim El, Kim SY, Yun H J, et al. Detection and quantification of a radiation-associated mitochnndrial DNA deletion by a nested real-time PCR in human peripheral lymphocytes.Mutat Res, 2012, 749(1-2): 53-59.
  • 6Fogarty MC, Devlto G, Hughes CM, et al. Effects of alpha-lipoic acid on mtDNA damage after isolated muscle contractions.Med Sci Sports Exerc, 2013, 45(8): 1469-1477.
  • 7Jamart C, Benoit N, Raymackers JM, et al. Autophagy-related and autophagy-regulatory genes are induced in human muscle after ultraendurance exercise.Eur J Appl Physiol, 2012, 112(8): 3173-3177.
  • 8Bedford TG, Tipion CM, Nilson NC, et al. Maximum oxygen consumption of rats and its changes wltb, various experimental procedure. ] Appl Physiol, 1979,47(6): 1278-1283.
  • 9De Moraes C, Davel AP, Rossoni LV, et al. Exercise training imoroves relaxation response and SOD-1 expression in aortic and mesenteric rings from high caloric diet-fed rats. BMC Physiol, 2005, 8:12.
  • 10Mortensen OH, Andersen K, Fischer C, et al. Calprotection is released from human skeletal muscle tissue during exercise. Physiol, 2008, 586(14): 3551-3562.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部